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ABSTRACT 
As a result of overexploitation, natural resource 

communities are suffering from declining resource 

stocks. To avoid the tragedy of the commons, the 

majority of the actors in a natural resource community 

need to act cooperatively and extract sustainably. 

However, collective action is difficult to reach because 

actors face a social dilemma between extracting a 

sustainable manner (cooperation) and over extracting 

(free riding). In this thesis we used the computer 

simulation method agent-based modeling to demonstrate 

how changing the number of social ties affects social 

information and ecological knowledge sharing and 

thereby natural resource use. Receiving social 

information about other actors, can affect one’s decision 

in a social dilemma, and actors need ecological 

knowledge to extract sustainably. We implemented an 

information sharing structure in a maintenance public 

good game to construct a simplification of a natural 

resource community. Our model demonstrated that 

increasing the social network density increases both 

types of information sharing. However, it also 

demonstrates that increasing the density of ties in a 

community has a contradicting effect on natural resource 

use. More information sharing impacts the collective 

ecological knowledge positively but can weaken 

collective action under certain circumstances. The last 

chapter of this thesis discusses the limitations and 

implications of our model results. 
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1. Introduction 
There is a growing awareness on how human behavior affects the world’s natural resources, 

such as fish, wood, oil, and minerals (Soulé, 2020; Cockburn, 2021). People overexploit 

natural resources which results in declining resource stocks and eventually overexploitation 

(Soulé, 2020). A natural resource has been overexploited when people harvest until the 

resource stock cannot recover anymore (Nuwer, 2020). Overexploitation of a natural resource 

disturbs the local ecosystem, causes biodiversity loss, and affects the people whose income 

and wellbeing depend on the condition of the natural resource (Soulé, 2020). Actors in natural 

resource communities are an example of people who highly depend on their natural resources 

because they collectively manage the extraction process of local natural resources to generate 

an income or to provide for food (Fabricius, 2020). However, communities face difficulties 

sustaining local natural resources because actors who economically benefit from resource 

extraction impact the sustainability of natural resources, and their financial goal can result in 

overexploitation of natural resources. Overexploitation of local natural resources would have 

social and financial consequences for the community because resource extractors would 

become jobless and lose their source of income. Together with many more, local fishing 

communities in India suffer from the consequences of a strong decline in fish stocks (Gawade, 

2021). Years of unsustainable fishing practices has caused biodiversity loss, which makes it 

difficult for the current fishermen to generate enough income to live. Because they need to 

generate income to survive, the local fishermen continue overexploiting the fishery, which 

will eventually result in the depletion of the natural resource. We need to understand the 

antecedents of natural resource use to be able to help such communities avoiding 

overexploitation of local resources and its consequences. 

Communities that overexploit their natural resources often struggle to reach collective action, 

because resource extractors face the social dilemma in which they have to choose between 

extracting a sustainable manner to support the collective good and over extracting to increase 

their profits. An extractor receives a higher pay off when he over extract, independent of the 

actions of other extractors. Over extracting is a form of free riding, which is benefitting from 

a collective good without contributing to the maintenance of it. Free riding is the rational self-

interested choice in a social dilemma because it gives the highest pay-off independent of the 

actions of other actors. However, the natural resource will be overexploited if no one 

contributes to the maintenance of it, resulting in the tragedy of the commons where eventually 
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all parties are left in a worse position (Hardin, 1968). Communities need collective action to 

overcome the free riding problem and to maintain their natural resources, which means that 

extractors need to start cooperating by extracting sustainable instead of over extracting. 

Cooperation is a key element for solving collective dilemmas, and there are several 

mechanisms that can help establishing cooperation. Reputation is an important factor that can 

promote cooperation (Alexander, 1987), because free riding affects one’s reputation 

negatively after which an actor can get socially punished. Actors can use cooperative behavior 

as a strategy to invest in their reputation and avoid those punishments (Milinski, 2016). This 

is referred to as the indirect reciprocity mechanism (Alexander, 1987; Nowak & Sigmund, 

2005), where the “reputation threat” might stimulate cooperation and thereby sustainable 

resource use. However, Schill et al. (2016) demonstrated that besides cooperation, groups also 

need ecological knowledge to sustain natural resources. Local natural resources have unique 

characteristics which makes it important to understand how the resource stock responds to 

extraction behavior (Menzies, 2006). If actors in a community lack knowledge about the local 

natural resource, it may be difficult to avoid overexploitation. 

Both reputational and ecological information can affect natural resource use, and both types 

of information can be shared through communication. Using a relational approach can be a 

valid way to study how interactions between resource extractors affect the sustainability of a 

community’s natural resources. Isaac et al. (2007) observed that the diffusion of information 

in a natural resource community relies on the social relations between resource extractors, 

meaning that the social network structure could affect the diffusion of social and ecological 

information and thereby natural resource use (Bodin et al., 2006). Information about one’s 

reputation reaches more actors in a community with more social ties due to social information 

sharing. In such a community an actor might want to invest in a positive reputation by 

cooperating, because there is a larger group that learns about his reputation and thus might 

reciprocate his behavior. Social relations also support the diffusion of ecological knowledge 

which can positively affect natural resource use, because more actors have access to local 

ecological knowledge. However, simulation studies demonstrate that communities with a high 

number of social relationships face the threat of homogenization of knowledge (Bodin & 

Norberg, 2005), which means that information sharing can promote a consensus about natural 

resource use, inducing people to behave alike. This impacts natural resource use positively 

when this consensus is sustainable, but it affects resource use negatively when the normative 

knowledge is not sustainable. 
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Even though the diffusion of both social and ecological information affects natural resource 

use, they have not yet been studied in combination. Changing the social network density 

could have a contradicting effect on the sustainability of natural resources, because it affects 

both social and ecological information sharing. We used agent-based modeling to demonstrate 

how changing the social network density could affect natural resource use under certain 

assumptions/conditions. Understanding how changes in the social network density affect 

sustainability can support the development of social network interventions in natural resource 

communities. We implemented an information sharing structure to analyze how the diffusion 

of ecological and social information affect natural resource use in the same context. 

Theorizing about possible contradicting effects can help generate new testable hypothesis and 

give insights into social network interventions in natural resource communities. This leads to 

the following research question: 

 

Under what social network density conditions can we expect sustainable behavior in natural 

resource communities given by the diffusion of ecological and reputational information? In 

other words, how could changing the density of social ties affect the spread of ecological and 

reputational information and how could this affect sustainable behavior in natural resource 

communities?  
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2. Theoretical background 
In this chapter we give the theoretical background of the model by discussing literature 

regarding important factors in natural resource communities and sustainability. Firstly, we 

discuss literature regarding cooperation in social dilemmas and give a description of our 

research model. Next, we give literature regarding two key factors of the model: Reputation 

and ecological knowledge. We discuss how reputation affects cooperation and thereby natural 

resource use and the role of ecological knowledge in natural resource communities. Finally, 

we will discuss the role of social networks in natural resource communities, and how the 

social network density could affect the diffusion of social and ecological information, and 

thereby the sustainability of natural resources. 

 

2.1. Cooperation in social dilemmas 
Cooperation is needed for natural resource communities to sustain their natural resources and 

is therefore an important concept in this thesis. Actors in a natural resource community face a 

social dilemma in which they have to decide between cooperating and free riding. A social 

dilemma is a situation in which a group would be better off if all actors cooperated, but 

because individual interests discourage cooperation, it is the rational choice to free ride (van 

Lange et al., 2013). In natural resource communities, actors have to decide between extracting 

a sustainable manner and over extracting. Extracting sustainably represents the cooperative 

option, because an actor would contribute to the maintenance of the collective good, whereas 

over extracting represents free riding behavior, because an actor does not contribute to the 

maintenance of the collective good. Table 1 shows a matrix of the simplified scenarios for a 

resource extractor. Over extracting is the dominant choice, because it gives the highest pay off 

independent of the actions of other agents. On aggregate this independent decision making 

results in the tragedy of the commons (Hardin, 1968), because no one contributes to the 

maintenance of the natural resource. 

Table 1 

 The four scenarios in a social dilemma for natural resource extraction. 

 Extractor A cooperates Extractor A free rides 

Other actors cooperate Lower profits + sustaining the 

natural resource 

Higher profits + sustaining the 

natural resource 

Other actors free ride Lower profits + depletion of the 

natural resource 

Higher profits + depletion of the 

resource 
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Cooperation is needed for groups to succeed in their jobs or goals and therefore researchers 

have been studying why and under which circumstances people act cooperative (Fischbacher 

et al., 2001; Gächter, 2007; van Lange et al., 2013; Wittek & Bekkers, 2015). Cooperation is a 

form of prosocial behavior, which is behavior from which others benefit. An explanation for 

cooperative behavior is that people have social preferences they consider in a social dilemma 

(Fehr & Fischbacher, 2002; Wittek et al., 2013), because they have inequality aversion 

(Herreiner & Puppe, 2010), or because they experience positive emotions when they help 

other actors (Aknin et al., 2013). Reciprocity is another explanation for cooperative behavior 

(Nowak, 2006), which means that an actor acts cooperatively so his effort may be rewarded in 

a later encounter. Indirect reciprocity is when an actor cooperates to invest in his reputation 

(Milinski, 2016), after which a third party who observes/learns about one’s behavior might 

reward the cooperative effort. In this thesis we studied how reputation affects cooperation in 

natural resource communities. 

 

 
Figure 1: Research model 

 

2.2. The research model 
Firstly, we included reputation in our model because studies have shown that reputation 

affects cooperation, which is needed to sustain natural resources (Alexander, 1987; Nowak & 

Sigmund, 2005; Ostrom, 2000; Milinski, 2016). Secondly, we included ecological knowledge 

in this thesis, because actors in natural resource communities need to understand how the 

natural resource stocks responds to extraction so they can deal with the uniqueness and 

complexity of natural resources (Menzies, 2006; Schill et al., 2016). We studied how 

changing the social network density affects the diffusion of both types of information and 

how that affects natural resource use. People share information with their social relationships 

(Abrahamson & Rosenkopf, 1997; Isaac et al., 2007), meaning that in communities with more 
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social relationships there is more information sharing. Figure 1 visualizes the research model 

of this thesis. 

 

2.3. The effect of reputation on natural resource sustainability 
Reputation can promote cooperation in several ways and could therefore be an important 

factor in reaching collective action and maintaining natural resources. Reciprocity and social 

information sharing are two mechanism that can stimulate cooperation (Milinski, 2016; 

Nowak, 2006). Direct reciprocity facilitates cooperation when two actors encounter each other 

multiple times (Nowak, 2006), because a cooperative effort might be rewarded during a future 

encounter. Indirect reciprocity promotes cooperation when actors do not encounter each other 

repetitive times. According to indirect reciprocity theory (Alexander, 1987; Nowak & 

Sigmund, 2005), when one’s actions are observable, cooperation can be seen as an investment 

in a positive reputation. This “reputation threat” might support cooperation by discouraging 

free riders and rewarding cooperators. When others observe one’s behavior in a natural 

resource community, extracting sustainably could affect his reputation positively, whereas 

over extracting would affect his reputation negatively. People consider the effects of their 

actions on their reputation because one’s reputation can have implications during future 

interactions (Milinski, 2016). People with a positive reputation are more likely to receive help 

than people with a negative one (Nowak, 2006), whereas people with a negative reputation 

also risk being (socially) punished. An actor might receive a direct higher pay off by over 

extracting, but he could experience negative consequences of his decision later. The 

observability of an actor’s behavior affects his decision in a social dilemma because the more 

people learn about his behavior, the more people could reciprocate his free riding behavior. In 

an environment where one’s action are not observable at all, free riding is more profitable, 

because there are not actors to punish him for it. 

Secondly, the reputation of others can also affect an actor’s decision in a social dilemma. Kim 

et al. (2019) showed that people are more likely to cooperate when they believe that their 

partners will cooperate as well. People who are willing to cooperate when others cooperate as 

well are conditional cooperators (Rustagi et al., 2010). Conditional cooperators estimate 

whether their partner will cooperate or defect, which can be based on the reputation of his 

partner (Gächter, 2007). A conditional cooperator in a natural resource community is most 

likely to extract sustainably when he estimates that other actors in the community are 

extracting sustainably as well. He might be triggered to defect if he estimates that other actors 

are over extracting (de Olivera et al., 2015), because being the only one who extracts 
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sustainably would give him the lowest pay off, while the natural resource gets depleted either 

way. The more conditional cooperators there are in a community, the more likely a norm of 

cooperation will be developed (Rustagi et al., 2010). Reputational information is obtained 

directly through observing one's past behavior, whereas indirect information is gained through 

information sharing. People can receive social information through gossip (Wu et al., 2016), 

which occurs when at least two actors evaluate about a third party, without the last mentioned 

being present (Emler, 1990). Gossip could promote cooperation because cooperation would 

affect one’s reputation positively, while free riding would spread one’s negative reputation 

(Giardini & Wittek, 2019). 

 

2.4. Ecological knowledge 
Simulations of a behavioral game in which agents extract from an abstract natural resource 

demonstrated that a group requires ecological knowledge to maintain the natural resource 

(Schill et al., 2016). Schill et al. modeled ecological knowledge as an estimation of how much 

they could sustainably extract. Actors could have difficulties with sustaining their natural 

resources if they do not understand the dynamics between extraction behavior and local 

resources. Natural resources are unique due to their characteristics, but also because of the 

ecosystem they are a part of (Menzies, 2006). General knowledge might not be sufficient to 

sustain natural resources because a fishery at the coast of Denmark might respond differently 

to certain extraction rates than the fishery somewhere else. Ecological knowledge can be 

defined as the perceptions that actors have about the local ecosystem, which consists of 

effective extraction practices, an understanding of how the natural resource functions, and 

shared norms and rules about resource use (Bettina, 2018). Understanding the dynamics of 

local natural resources goes paired with understanding the risks of exploitation, which can 

facilitate natural resource use by raising awareness and knowledge about how to extract 

sustainably. Actors gain ecological knowledge by observing how their behavior affects the 

natural resource (Laxman et al., 2004), but due to the complexity of ecosystems, it takes a 

considerable amount of experience to understand the dynamics between human behavior and 

a local natural resource. However, actors can also gain ecological knowledge through 

information sharing. Isaac et al. (2007) identified an ecological information sharing structure 

in natural resource communities, in which actors regularly shared information regarding the 

natural resource with the people close to them. Ecological information sharing could give 

actors access to knowledge that can be valuable for sustaining natural resources. Turner et al. 

(2014) studied how ecological information sharing in fishing communities affected resource 
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sustainability. He found that communities with ecological information sharing were better 

able to sustain their fishery than communities without knowledge sharing. Ecological 

knowledge sharing has two advantages: it can increase awareness of the risk of 

overexploitation, and actors learn how to extract natural resources sustainably. In this thesis 

we focused on ecological knowledge sharing in general instead of focusing on a specific 

natural resource. Natural resources are unique and often ask for specific knowledge, which 

means that generating knowledge on the local resource through experience or information 

sharing is relevant for all natural resources. 

 

2.5. Social networks 
A social network exists out of actors and ties. Actors are the study objects (resource 

extractors), and the ties are the (social) relations between the study objects. Social network 

studies measure a specific type of social relationship between actors to create an overview of 

how a group is socially structured (Robins, 2015). In groups there is no equal communication 

between all actors, but people are likely to communicate more regularly with people close to 

them (Isaac et al., 2007). Social networks are a useful tool to study cooperation problems, 

because through the implementation of a social network we can create an image of 

communities by spatially dividing the actors and by analyzing differences between actors in 

different network positions. With social networks we can link social network positions or 

social relationships to cooperative behavior. One’s social relations can affect cooperative 

behavior (Sommerfeld et al., 2007) and without a relational approach, we would miss out on 

important factors that can stimulate cooperation like reciprocity, indirect reciprocity, network 

embeddedness, and gossip (Alexander, 1987; Giardini & Wittek, 2019; Nowak, 2006; 

Sommerfeld et al., 2007). We needed to implement a social network structure in our model to 

study how social and ecological information sharing is affected by the social network density. 

The amount of information sharing depends on the number of social relations in a group. A 

measurement of the number of social ties is social density, which is the total number of ties in 

the network divided by the possible number of ties in the network.  

 

2.5.1. The diffusion of social information 
Studies show that groups with a high social network density are more likely to reach 

collective action (Croson & Bolton, 2012; Fowler & Christakis, 2010), because an increased 

number of social ties supports the diffusion of social information which can promote 

cooperation (Abrahamson & Rosenkopf, 1997; Skyrms & Pemantle, 2000). The more social 
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information sharing, the more people will become aware of an actor’s past actions, which 

creates an environment in which free riding strongly affects an actor’s reputation. In an 

environment with much social information sharing, one might try to avoid a poor reputation 

by cooperating (Gallo & Yan, 2015; Raub & Weesie, 1990; Sommerfeld et al., 2007). 

Cooperation could be used as an investment in one’s reputation, as this might be more 

profitable than free riding and receiving social punishments. Increased social information 

sharing can also impact conditional cooperators positively. Actors base their decision on 

available information about their partners, but this information is often incomplete (Flache, 

2020). Social information sharing increases the accuracy of an actor’s estimation of who are 

cooperators and who are free riders, which could lower uncertainty and facilitate cooperation. 

However, this could also trigger conditional cooperators to free ride (Hartig et al., 2015). If a 

conditional cooperator receives information about the free riding behavior of other actors, he 

could get demotivated to cooperate and start to free ride as well (de Olivera et al., 2015). Even 

if increased network density can make free riding easier to detect, it can also have detrimental 

effects on cooperation, by inducing more individuals to become free riders. 

The effects of social network density on collective action have also been studied in natural 

resource communities, showing that denser networks do not necessarily prevent 

overexploitation (Barnes-Mauthe et al., 2013; Bodin & Crona, 2008). A fishing community in 

Hawaii could not reach collective action because a consensus about fishing regulations could 

not be reached (Barnes-Mauthe et al., 2013). The community was divided in subgroups based 

on ethnicity with each their own ideologies about fisheries. Fishermen from different 

subgroups were prejudiced against each other and there was little space for cooperation. A 

fishing community in Kenya with a high density of social ties was not able to sustain the local 

fishery either (Bodin & Crona, 2008), because even if the community implemented fishing 

limitations to avoid complete depletion of the fishery, the fishermen did not comply with the 

rules. Researchers observed that fishermen shared much social information with each other, 

but this did not facilitate sustainable natural resource use. Apparently, the fishermen were not 

aware of the urgent risks of over extraction and in their opinion reporting rule breaking was 

more blameworthy behavior than breaking the rules. This is an example in which social 

cohesiveness fails to sustain collective action. Flache and Macy (1996) constructed a model of 

social control that demonstrated that strong ties can hinder collective action. The approval of 

strong interpersonal relationships can cause a second order free rider problem, which is the 

dilemma for cooperators between taking the cost of punishing a free rider or ignoring the rule 

breaking. The cohesiveness of the fishery village created an environment in which fishermen 
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did not dare to report rule breaking, because they thought that reporting would be received 

negatively by other fishermen and thus would affect their reputation negatively. This gave 

other fishermen the opportunity to continue over extracting without any punishment. In this 

fishing community the high social network density activated the indirect reciprocity 

mechanism, which in theory would have supported cooperation and reduced overexploitation, 

but the data shows that it stimulated a different kind of behavior which was not compatible 

with natural resource sustainability. These findings show how social mechanisms function 

depending on the social context (Pawson & Tilley, 1997) and how they generate different 

outcomes. Communities characterized by a high density of social ties can stimulate the 

normative behavior, but it depends on the norm whether this is effective in achieving natural 

resource sustainability. 

 

2.5.2. The diffusion of ecological information 
Model simulation demonstrated with the implementation of information sharing networks that 

increasing the network density supports the diffusion of ecological information (Abrahamson 

& Rosenkopf, 1997; Bodin & Norberg, 2005). In communities with a high social network 

density, more people have access to ecological knowledge, as people share ecological 

experiences and knowledge with their social relations (Isaac et al., 2007). However, high 

density networks pose the risk of increasing homogeneity of knowledge (Abrahamson & 

Rosenkopf, 1997; Bodin & Norberg, 2005; Little & McDonald, 2007). When there is regular 

interaction regarding natural resource use, people tend to adapt to the normative behavior in 

the group, after which communities can reach a consensus on natural resource use. This 

consensus can support natural resource use, but in cases of incorrect knowledge, the 

homogenization of knowledge could be problematic. Bodin and Norberg (2005) modeled 

ecological knowledge as an understanding of how extraction rates affected the natural 

resource, which could develop through experience and by receiving information from others. 

The model demonstrates that actors will also form their ideas about natural resource use when 

they did not receive ecological information from others. This means that in a network with a 

low density of ties, there is more variation in ideas of resource use. Heterogeneity of 

knowledge supports dealing with problems in a creative and innovative way but could also 

mean that a part of the community is not extracting sustainably because they lack the relevant 

knowledge. In contrast, communities with a high-density of social ties have less variation in 

ideas about resource use because there is more ecological information sharing (Abrahamson 

& Rosenkopf, 1997). The ecological information sharing model demonstrated that once high-
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density networks are in an unsustainable state, they have difficulties to recover from this 

(Bodin & Norberg, 2005). Turner et al. (2014) studied fishing communities in the United 

Kingdom and found that information sharing is beneficial for natural resource use, but that 

there was indeed little variation of knowledge in high-density networks. Inaction in the 

fishing community in Kenya was also partly caused by a consensus about a fishery that was 

not sustainable (Bodin & Crona, 2008). Finding a balance between connectivity that provides 

people with ecological knowledge and the risk of complete homogenization is a challenge that 

is important to address (Bodin et al., 2006; Turner et al., 2014). It is necessary to study the 

combined effects of social and ecological information sharing on the sustainability of natural 

resources. We used a combination of agent-based modeling and behavioral experiments to 

study under what social network conditions we can expect sustainable behavior in natural 

resource communities given by the diffusion of ecological and reputational information. In 

other words, how could changing the density of social ties affect the spread of ecological and 

reputational information, and how could this affect sustainable behavior in natural resource 

communities?  
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3. How sustainability in complex systems can be studied 
Natural resource communities are complex social systems because the ideologies of actors 

about natural resource use can change over time due to social interactions. The behavior of 

actors in a social dilemma can be affected by interaction (Gächter, 2007), and actors can gain 

ecological knowledge through communication (Isaac et al., 2007). To understand such 

complex systems, we need to capture stochasticity so we can analyze how behavior and 

characteristics develop over time. Behavioral experiments and agent-based modeling are two 

methodologies that capture stochasticity and are often used to study complex social systems 

(Bodin & Norberg, 2005; Gallo & Yan, 2015; Kim et al., 2019). We combined those two 

methods to study social dilemmas and the diffusion of ecological knowledge in natural 

resource communities. Before we go into the description of the model, we explain how 

behavioral experiments and agent-based modeling can be used to study complex systems. 

 

3.1. Behavioral experiments 
Social dilemmas are often studied with behavioral experiments (Gallo & Yan, 2015; Kim et 

al., 2019), in which participants interact in a structured way. Like AgentEx (Schill et al., 

2016), our simulation model represents a behavioral experiment where agents face a social 

dilemma: To cooperate or to free ride for multiple rounds. Behavioral games represent 

stylized interactions, and therefore they lack the contextual richness of field studies, but at the 

same time they make it possible to study single decisions performed by self-interested 

players. Different types of public good games have been studied in sociology to understand 

how certain incentives can stimulate cooperative behavior (Ostrom, 2000; Sonnemans et al., 

1996; Tomassini & Antonioni, 2020; van Dijk et al., 2002). In a basic public good game, the 

participants have a number of tokens. They have to decide whether they put their tokens in the 

public pot (cooperating) or keep it for themselves (free riding). After everyone made their 

decision, the tokens that have been put in the public pot will be doubled and divided over all 

players. If everyone would cooperate, the public pot will have the maximum number of 

tokens, resulting in the best possible collective pay off. However, keeping your tokens and 

profiting from the public good gives the higher individual profit independent of what the 

others decide. On aggregate, this independent decision-making results in the lowest pay off 

for the group. Our experimental simulation differs from the classic public good game because 

it is an abstract representation of a natural resource community, meaning that the agents do 
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not provide the public good, but instead must maintain it. Gächter et al. (2017) showed that 

maintaining a public good is often more difficult than providing a public good, because not 

contributing to the public good is often perceived more blameworthy than overexploiting 

something (Cubbit et al., 2011). Not contributing might have a bigger impact on an actor’s 

reputation, which increases the threshold to free ride. 

There are, however, incentives like sanctioning, face-to-face communication, and reciprocity 

that stimulate participants to show cooperative behavior (Nowak, 2006; Ostrom, 2000; 

Yamagishi, 1986). Researchers implement different incentives in public good games to 

understand under which circumstances cooperative behavior appears. A possible extension of 

the public good game is the implementation of social ties among participants (Tomassini & 

Antonioni, 2020). After participants interacted with others, they form social ties (van Dijk et 

al., 2002). The nature of this social relationship can affect an actor’s decision-making in a 

social dilemma when he meets this person again. A social tie with a positive memory can 

stimulate cooperative behavior, while a negative memory can stimulate free riding 

 

3.2. Agent-based modeling 
To study how changing the social network density of a community affects natural resource 

use, we used agent-based modeling to construct and simulate a maintenance public good 

game. Agent-based modeling is a computer simulation method, which is used as a stylized 

and highly abstract representation of the real world (Squazzoni, 2012). Agent-based models 

usually contain a group of agents, i.e., entities representing individuals, animals, 

organizations, but in this study, they represent people playing a maintenance public good 

game. During the simulation, agents interact with other agents, and make decisions based on 

set behavioral rules. Agents are autonomous entities designed to behave according to certain 

rules implemented in the model. Agents can have different characteristics and are able to learn 

during the simulation. Agent-based models are useful because they are stochastic, and 

heterogeneity in groups of agents can be modeled. Agent-based modeling is used in sociology 

to study complex social systems (Squazzoni, 2012) in which the aggregated behavior at the 

macro-level, which is the main focus of the discipline (de Graaf & Wiertz, 2019), cannot be 

analytically disentangled because the link from micro to macro level is more complex due to 

interdependence between study objects (Ornstein & Hammond, 2021). Macy & Flache (2009) 

showed that if study objects are not independent, linear regression of individual characteristics 

on behavioral outcomes could suggest misleading explanations, because the role of mutual 

social influence between interdependent individuals is neglected. With agent-based modeling 
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we explored how certain mechanisms affect human behavior over time. For this thesis, agent-

based modeling was needed to theorize about the complexity of natural resource communities. 

Whether a community is able to sustain their natural resources is not simply an aggregation of 

the behavior of its individuals. Indeed, it is a complex social system due to interdependence 

between resource extractors and heterogeneity in characteristics.  

The theory and the model in this thesis have been inspired by AgentEx (Schill et al., 2016). In 

this study Schill et al. analyzed behavior experiments, based their agent-based model on those 

experiments, and simulated different scenarios based on the results. The original AgentEx was 

developed to explain the behavioral patterns shown by participants in behavioral experiments. 

More specifically, an explanation was developed and tested elaborating the conditions under 

which cooperative groups can over or underexploit the shared resource. Each time step in the 

model reflects an experimental round in which agents may communicate and form an 

agreement about extraction, extract the resource, and be confronted with the actual level of 

the new resource. Within the model agents could learn to extract sustainably by reflecting on 

the dynamics between extraction behavior and a renewable resource. The conditions of initial 

knowledge about the resource dynamics (ecological knowledge) differed per scenario to 

demonstrate the importance of initial ecological knowledge in sustaining natural resources.  

The interdependency between study objects in natural resource communities makes studying 

the social mechanisms complex, which means that we need a simplification to understand 

how social and ecological information sharing affect natural resource use. With agent-based 

modeling, we created a simplified abstract world, where we focus on the two information 

sharing mechanisms. This gave us the opportunity to theorize about the effects of social 

network density on the behavior of resource extractors. Gaining a better understanding of 

those mechanisms can help us shape social network interventions to avoid depletion of natural 

resources. For this study, the program Netlogo has been used to construct a simulation of 

resource extractors playing a maintenance public good game. Netlogo is a multi-agent 

programmable modeling environment which is used by many researchers 

(https://ccl.northwestern.edu/netlogo/). Netlogo is used to simulate natural and social 

phenomena. It is particularly well suited for modeling complex systems which develop over 

time (Wilensky, 2021). 

  

https://ccl.northwestern.edu/netlogo/
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4. Model description 
We used the ODD protocol to give a clear description of the model. The ODD protocol is 

often used for agent-based model descriptions and divides it in three sections: overview, 

design principles, and details (Grimm et al., 2006). The overview and detail section can be 

found in this chapter, and the design principles section can be found in the appendix. 

 

4.1. Overview 

4.1.1. Purpose 
The goal of this agent-based model was to study how changes in the social network density in 

natural resource communities could affect the spread of social and ecological information, and 

thereby natural resource use. We designed a group of agents that played a maintenance public 

good game and analyzed how the agents behaved on different network densities. We aimed to 

improve our understanding of the role of a community’s social network density in natural 

resource use by implementing both information sharing mechanisms in one model. 

 

4.1.2. Entities, state, and variables and scales 
The model consists of a group of 80 agents that play a maintenance public good game in 

which they collectively have to manage an abstract natural resource. Agents have attributes 

that affect their decision-making, also presented in table 2. Firstly, agents are characterized by 

a binary attribute that determines whether an agent is a conditional cooperator or a free rider. 

We chose to use those two types of agents because behavioral experiments showed that not all 

actors are completely self-interested (Fehr & Gintis, 2007; Gächter, 2007). They observed that 

beside the self-interested actors, some participants also showed cooperative behavior if they 

estimated that their partners would cooperate as well. Even though we generalized the types 

of actors, the difference between actors is expected to be more nuanced in reality. However, 

we decided to implement two types of agents in the model to avoid that the complexity of 

different types of actors would distract from the purposes of the model. Secondly, agents have 

a reputational memory of the behavior of other agents, which can develop over time due to 

social interactions. A conditional cooperator calculates the sum of the reputational 

information about his partners, and he does not cooperate if this memory is negative. Positive 

reputational information about a partner is counted as plus one, negative reputational 

information is counted as minus one, and no reputational information is neutral. The 
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conditional cooperators will cooperate when the sum of the information about its partners is 

above 0 (e.g., the sum of two cooperators and one free rider would be one, which means that a 

conditional cooperator would cooperate). We choose a relatively forgiving conditional 

cooperating rule to reflect some degree of leniency in cooperation strategies. Kollock (1993) 

demonstrated with his behavioral game model that more lenient strategies outperform 

restrictive strategies, because if a conditional cooperator uses a restrictive strategy, he will 

choose defection when observing the slightest disturbance. More flexible strategies are 

needed to sustain cooperation, because they leave room for errors and external factors. 

Finally, agents have individual ecological knowledge that is used to form a sustainable 

extraction. This variable can develop over time, as agents are able to update their individual 

ecological knowledge by reflecting on the natural resource stock after extraction, and by 

receiving ecological information from other agents.  

Each round agents are placed in groups of four. They combine their individual knowledge 

with the individual knowledge of their group members to form a collective group knowledge. 

Agents extract from the natural resource stock based on the group knowledge. The natural 

resource stock regrows after the extraction process with a logistic growth function, meaning 

that the sustainability of the natural resource stock depends on how much the agents extract. If 

the natural resource stock is at 0, it cannot regrow anymore, which means that the natural 

resource has been depleted. The agents have social ties that connect them to other agents, and 

they use those social ties to share social and ecological information with other agents. 

Table 2 

State variables and scales 

Variables Variables Description Range 

Agent 

attributes 

Individual 

knowledge 

Agents have initial knowledge about the natural 

resource dynamics. A value of five is the lower bound 

and represents the strongest over extraction. 34 is the 

upper bound and represent the strongest under 

extraction. The number represents an estimation of a 

sustainable stock after the group extraction. A value 

of 5 means that the agent estimates that his group 

should extract until a partial resource stock of five 

units to gain the maximum sustainable profit. 

5 - 34 

 
Prosocial 

preferences 

Agents with prosocial preferences are conditional 

cooperators, agents without prosocial preferences are 

free riders. 

Prosocial 

preferences (1) 

no prosocial 

preferences (0) 
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Reputational 

memory 

Agents memorize past interactions with other agents. 

There are three possible memories: no memory (0), a 

negative memory (-1), and a positive memory (1). 

This memory affects the decision-making process of 

agents. Conditional cooperators calculate the sum of 

their reputational memory about their group members. 

If the sum is above 0, they cooperate, if the sum is 

below 0, they defect (e.g., one negative + one positive 

+ one positive = 1, which means that the conditional 

cooperator cooperates). 

-1, 0, 1 

 Social ties Agents can have social ties that connect them to other 

agents. Agents can share social and ecological 

information through ties with other agents. 

Tie (1), no tie 

(0) 

Collective 

variables 

Density The density represents the total number of social ties 

divided by the total of possible social ties in the 

group. In this model we ran simulations on six density 

levels. 

0, 0.025, 0.05, 

0.1, 0.2, 0.4 

 Natural 

resource 

stock 

Agents collectively extract from the natural resource 

stock. When the natural resource stock is 0, the agents 

overexploited the natural resource.  

0 - 680 

 Partial 

resource 

stock 

Each round the natural resource stock will be equally 

divided over the 20 groups. Agents extract from the 

partial stock that belongs to their group. At the end of 

the round the sum of all partial stocks forms the 

natural resource stock. 

0 - 34 

 Group 

knowledge 

The group knowledge is the average of agent’s 

individual knowledge within the group. 

5-34 

 

 

4.1.3. Process overview and scheduling 
Figure 2 visualizes the ten steps of the simulation cycle. Firstly, the agents will be divided in 

groups of four. Each group gets an equal share of the current natural resource stock and with 

this partial stock each group plays the maintenance public good game. When a new cycle 

starts, agents will be placed in new randomized groups. Secondly, the agents form a collective 

group knowledge, which is the average individual knowledge in the group. The group 

extraction is the partial natural resource stock minus the group knowledge and the agreed-on 

extraction is the group extraction divided by four. Agents also create an individual extraction, 

which is the group extraction divided by three. In step four, agents decide between the group 

extraction (cooperation) and their individual extraction (free riding). Agents base this decision 

on their prosocial preferences and the social information they have about their group 

members. The decision making process has been visualized in figure 3. In step five agents 

extract from the partial resource stock that belongs to their group, and in step six they observe 

the behavior of their group members. Agents create a negative memory of a group member 
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that defected and a positive memory of group members that cooperated. In step seven agents 

share those observations with other agents through their social ties, after which the receiving  

 

 

 

Figure 2: Simulation Cycle 

 
Figure 3: Decision-making process 

 

agents adopt this information by creating a similar memory about the observed agent. In step 

eight all partial resource stocks regrow with a logistic growth function. Agents reflect on their 

group performance based on the regrowth of the partial resource stock. A high regrowth 

function means that the group extracted sustainably. A low regrowth function means that the 

group either over or under extracted. The higher the regrowth function, the more likely that 
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the agents change their individual knowledge to the group knowledge. When the regrowth 

function is perfect, agents adapt fully to the group knowledge, whereafter they gain ecological 

knowledge. This also means that when an agent has sustainable knowledge without knowing 

it, he affects the group knowledge in the sustainable direction, but then adapts to a less 

sustainable group knowledge. Agents need a confirmation of a sustainable regrowth to gain 

confidence in their knowledge. This reflects some bounded rationality in the ecological 

reasoning of actors (Filatova et al., 2013). It can be unclear whether an actor’s estimation is 

sustainable because multiple actors extract from the same natural resource. Actors have to 

learn about the resource dynamics based on collective extractions and outcomes. Agents that 

gained sustainable knowledge will share their knowledge with their social ties. Agents 

without sustainable knowledge that receive this information adjust their individual knowledge 

to the incoming knowledge. Once an agent gained sustainable ecological knowledge, he trusts 

his own knowledge, and he will not adapt to the group knowledge. Table 3 gives a more 

detailed description of the model’s algorithm. 

Table 3 

Elaboration of the model steps 

Step in the 

simulation 

Description of the function 

1. Extractors 

are divided 

in groups of 

four 

The agents are randomly divided in groups of four extractors. The natural 

resource stock will be equally divided over the groups. Every group plays a 

maintenance public good game with their group members and the partial 

resource stock. All partial stocks will be pooled together at the end of the 

round. Each round, the agents will be divided in new randomized groups. 

What is left of the natural resource stock will again be equally divided over 

the new groups. 

2. Groups 

calculate 

group 

extraction 

Agents have individual knowledge. This is an estimation of which (partial) 

resource stock is sustainable after the group extraction. A group knowledge 

of 25 would mean that the agents estimate that extraction until a resource 

stock of 25 would be the most sustainable option. Individual knowledge 

ranges from 5 until 34. The group knowledge is the average of the individual 

knowledge of the agents in the group. To calculate the group extraction the 

group knowledge will be extracted from the partial resource stock. The 

group extraction will be equally divided over the four agents that are part of 

the group. This is the agreed-on extraction per agent. This group forming 

process is inspired by AgentEx (Schill et al., 2016), and has been applied on 

a bigger scale. 

3. Agents 

calculate 

individual 

extraction 

Agents create an individual extraction which represents free riding. The 

individual extraction is the group extraction divided by three instead of by 

four. The individual extraction has a minimum of 2.5, meaning that if the 

group extraction is lower than 10, agents will set their individual extraction 

on 2.5. We ran simulations with different parametrizations and noticed that 

if we put the minimum individual extraction higher, unsustainable extraction 
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resulted quickly in resource depletion. We chose a relatively mild form of 

free riding to reflect long term effects of over extracting behavior. Natural 

resources can be quite resilient, and actors need to continue over extracting 

for a longer period of time before the resource is completely depleted. 

4. Decision-

making 

process 

Agents follow the steps shown in figure 3 to decide between cooperating 

(group extraction) and free riding (individual extraction).  

Agents without prosocial preferences choose the individual extraction. 

Agents with prosocial preferences only choose the individual extraction if 

they have a negative memory about the other agents in the group. If the 

agent does not have a negative memory about the other agents in the group, 

he chooses the group extraction. 

The agent (with prosocial preferences) can have no information (+0), 

positive information (+1), or negative information (-1) about a group 

member. The agent calculates the sum of the social information about his 

group members. When the sum is 0 or higher, the agent will cooperate, 

when the sum is below 0, the agent will defect. 

5. Extraction The agents extract from the partial natural resource stock that belongs to 

their group. 

6. Partners 

observe 

extraction 

behavior 

Agents create a directed memory link to the other agents in the group. If an 

agent extracted the group extraction, the other agents create a positive 

memory link to him (1). If an agent extracted the individual extraction, the 

other agents in the group create a negative memory link to him (-1). Those 

directed memory links only change when an agent (in)directly observes that 

this specific agent behaves differently. 

7. Share 

social 

information 

Agents share those observations with their social relations. Agents who 

received this social information will create a similar memory link towards 

this specific agent. However, agents only share social information when they 

went for the group extraction in that round. An agent that indirectly received 

social information keeps this memory, and only adjusts this information 

when he in(directly) observes that this specific agent behaves differently.  

8. Regrowth 

natural 

resource 

After the extractions, the partial natural resource stocks regrow with a 

logistic function. Ideally, every group extract until a partial stock between 

25 and 29. This gives a regrowth function of 9. A partial stock lower than 25 

or higher than 29 will give a lower a regrowth function. At the end of every 

round all partial stocks will be pooled together. In the beginning of the next 

round, the natural resource stock will again be divided over the 20 groups. 

 

If partial stock >= 50 [set regrowth 0] 

If partial stock => 45 AND <= 49 [set regrowth 1] 

If partial stock => 40 AND <= 44 [set regrowth 3] 

If partial stock => 35 AND <= 39 [set regrowth 5] 

If partial stock => 30 AND <= 34 [set regrowth 7] 

If partial stock => 25 AND <= 29 [set regrowth 9] 

If partial stock => 20 AND <= 24 [set regrowth 7] 

If partial stock => 15 AND <= 19 [set regrowth 5] 

If partial stock => 10 AND <= 14 [set regrowth 3] 

If partial stock => 5 AND <= 9 [set regrowth 1] 

If partial stock <= 4 [set regrowth 0] 
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9. Reflect on 

extraction 

behavior 

Agents observe how their group performed. Agents are more likely to 

change their individual knowledge to the group knowledge when the 

regrowth of the partial resource stock is high. 

 

If regrowth = 9 [set individual knowledge group knowledge] 

If regrowth = 7 [set individual knowledge (group knowledge + individual 

knowledge) / 2 

If regrowth = 5 [set individual knowledge (group knowledge + individual 

knowledge * 2) / 3 

If regrowth = 3 [set individual knowledge individual knowledge] 

If regrowth = 1 [set individual knowledge individual knowledge] 

If regrowth = 0 [set individual knowledge individual knowledge] 

 

When the regrowth is 9 (highest), agents learn what the sustainable 

knowledge is and fully adopt the group knowledge. 

10. Share 

ecological 

knowledge 

Agents that gained the sustainable ecological knowledge share this with 

other agents through their social ties. Agents on the receiving end will only 

adopt the knowledge when they have not yet gained ecological knowledge. 

 

4.2. Details 

4.2.1. Initialization 
 

In this section we explained why we elected the initialization of the variables for the 

simulation scenarios. Figure 4 shows the interface of the model in Netlogo to give an 

impression of the model. The buttons, choosers, and slider are located at the left side of the 

interface (blue circle), the visualization of the social network and the natural resource are 

located in the middle (red circle), and the plots and monitors are at the right side of the  

 

Figure 4: Model interface at tick 0 (scenario 2). 
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Figure 5:Model interface after 50 ticks (scenario 2). 

interface (green circle). The buttons are used to run the simulation, and the choosers and 

sliders are used to set the initializations of the variables. Figure 5 shows the interface of the 

second scenario at the end of a simulation run (50 ticks) with the measurements given by the 

plots and monitors. 

 

Group size 

We chose to model a group of 80 agents, because it can be evenly divided in 20 groups of 

four. The groups of four are inspired by AgentEx (Schill et al., 2016), where they used this 

group size in the execution of their behavioral experiments. We chose a group of 80 agents so 

we could implement a social network structure to study the effects of the diffusion of social 

and ecological information on natural resource sustainability. If the group size was too small, 

we would not be able to implement different relevant network structures, because information 

would reach all agents too fast. With 80 agents we can model different network densities to 

compare its effects on resource sustainability. 

 

The social network 

The 80 agents are set up in a circle and can have social ties to other agents. Figure 6 is a 

screenshot of the interface of our simulation in Netlogo and shows how the social network has 

been structured. The 80 agents are positioned in a circle and form ties to the agents spatially 

closest to them. There is homogeneity in the network positions of agents, meaning that 
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changing the density of ties affects all agents equally. If the social network density is zero, 

agents have no social ties to any agents. In simulations with a density of 0.025, agents have 

social ties to two agents who are spatially closest to them. That means that agents have a 

social tie to their closest left and right neighbor. With a density of 0.05 they have social ties to 

the four closest neighbors, etc. We ran repetitions on six social network densities (0, 0.025, 

0.05, 0.1, 0.2, 0.4). Social ties are undirected which means that the social relations are 

reciprocal. This type of tie was elected because the social network represents an ecological 

and social information sharing network, in which information goes both ways. 

 

Figure 6: Netlogo interface on a social network density of 0.025 (two ties per agent). The grey dots represent the agents, and 

the lines between them represent the social ties. The green object in the middle represents the natural resource and its color 

displays its state (green = high stock, yellow = medium stock, orange = low stock, red = depleted).  

The natural resource 

In AgentEx, the sustainable natural resource stock after extraction was set between 25 and 29. 

If the agent extracted until a value between 25 and 29, the natural resource stock would 

regrow by nine (Schill et al., 2016). This model was inspired by AgentEx, and we 

implemented a similar extraction process. We started with a natural resource stock of 680, 

because in our model there are 80 agents extracting from the natural resource stock. At the 

start, each group is responsible for a partial natural resource stock of 34 (680 / 20). Just like in 

AgentEx, extracting until a partial natural resource stock between 25 and 29 would result in a 

regrowth function of nine. The growth function is smaller in case of over or under extraction. 

 

Prosocial preferences 

The number of agents with prosocial preferences in the simulation affects the sustainability of 

the natural resource considerably. The initialization of this variable determines how many 

conditional cooperators there are in the simulation, and it needs to be chosen carefully. The  
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Figure 7:The effect of prosocial preferences on natural resource sustainability. The social network density is given by the 

color of the dot (blue = density of 0, red = density of 0.1, grey = density of 0.2, orange = density of 0.4). Each dot represents 

the average of 10 simulation runs on a social network density level combined with a number of conditional cooperators. 

 

behavioral rule for conditional cooperators is that they start with a cooperative strategy when 

they have no information about their partners, and they free ride when they know that the 

majority of the group are free riders. The implementation of this behavioral rule assumes 

initial friendliness of conditional cooperators, which we used to reflect their prosocial 

preferences (Fehr & Fischbacher, 2002). Starting with a cooperative strategy is a friendly but 

effective strategy to sustain cooperation, because according to their own rule (cooperation 

under the condition that one’s partner cooperates) (Rustagi et al., 2010), starting with 

cooperating gives the highest chance of creating a sustainable cooperative relation. We need 

to carefully choose the initialization of the prosocial preferences variable, because we do not 

want that the number of conditional cooperators completely determines the outcome of the 

simulation. If there are too many conditional cooperators, cooperation would be reached 

independent of the social network density, and with too little cooperators, the agents would 

not reach cooperation independent of the social network density. We ran 440 simulations with 

different numbers of conditional cooperators on different social network densities to observe 

what a relevant initialization of the prosocial preferences variable would be. We measured in 

which round the agents depleted the natural resource and visualized the results in figure 7. 

The agents are able to sustain the natural resource longer when more agents have prosocial 

preferences. Simulations that have less than 50 agents with prosocial preferences are not able 

to sustain the natural resource longer than 30 rounds. Simulations that have more than 60 

agents with prosocial preferences are able to sustain the natural resource independent of the 
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social network density. In our simulation we used 55 conditional cooperators, as on this 

initialization there is variation of natural resource sustainability between simulation with 

different social network densities. 

 

Length of the simulation and measurements 

One simulation run consists of 50 ticks. If the natural resource is depleted before the end of 

the simulation, the game ends. We set a maximum of 50 rounds, because within 50 rounds we 

noticed differentiation in resource sustainability between network densities, meaning that a 

maximum of 50 rounds gave us enough rounds to analyze how change in the social network 

density affects natural resource use. We ran ten simulation runs for each scenario. In each run 

we measured the natural resource stock at seven moments in the simulation: at the start, after 

one round, after 10 rounds, after 20 rounds, after 30 rounds, after 40 rounds, and at the end of 

the simulation. We calculate the average development of the natural resource stock on the six 

social network density levels. 

 

4.2.2. Scenarios  
Table 4 presents an overview of the different simulation scenarios, illustrating the parameters 

used for each simulation. 

Table 4 

Simulation scenarios 

 

Scenario 1 

The baseline model was used to analyze whether the model works and to compare it to the 

other scenarios. There are no agents with prosocial preferences, and no agents start with 

ecological knowledge. We ran ten simulations on each of the six social network densities. We 

expected that the natural resource will be depleted in one of the first rounds. There are no 

  Range of individual knowledge 5-34 Range of individual knowledge 25-29 

No agents have 

prosocial preferences 

Baseline model (1) - 

55 agents have 

prosocial preferences  

Both ecological and social information 

spreading scenario (4) 

Social information spreading scenario 

(2) 

All agents have 

prosocial preferences 

Ecological information spreading scenario (3) -  
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conditional cooperators in the simulation, which means that all agents choose the individual 

extraction, which leads to depletion of the natural resource. 

 

Scenario 2 

In this scenario, we analyzed how the social network density affects natural resource 

sustainability through the spread of social information. All agents had initial individual 

knowledge between 25 and 29. Agents started with sustainable knowledge to ensure this 

variable would not take the focus of the social information spreading mechanism. The 

simulation consisted of 55 conditional cooperators. We ran ten simulations on each of the six 

social network densities and measured the average stock of the natural resource stock at seven 

points in a simulation run (at the start, after 1 tick, 10 ticks, 20 ticks, 30 ticks, 40 ticks, 50 

ticks). We expected that a higher social network density affects collective action negatively. 

Agents with prosocial preferences receive more social information about their partners, which 

could trigger them to free ride.  

 

Scenario 3 

In this scenario, we focused on the spread of ecological knowledge and its effect on natural 

resource sustainability. All agents in the simulation were conditional cooperators, so the 

sustainability of the natural resource depended on the spread of ecological knowledge. All 

agents had an initial individual knowledge between 5 and 34. We ran ten simulations on each 

of the six social network densities, and we measured the average natural resource stock at the 

seven points in each simulation run. We expected that if the social network density increased, 

the agents would be better able to sustain the natural resource. Agents could form a 

sustainable group knowledge at a faster pace, because more agents had access to ecological 

knowledge. A fast spread of ecological knowledge could support sustainability of natural 

resources. 

 

Scenario 4 

In this scenario, we activated both the social information sharing and the ecological 

knowledge sharing mechanism. Agents had initial individual knowledge between 5 and 34 

and there were 55 conditional cooperators in the simulation. We ran ten simulations on each 

of the six social network densities, and we measured the average stock of the natural resource 

stock at the seven time points. We expected that increasing the social network density would 

have contradicting effects on natural resource use. There is little ecological information 
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sharing in low density networks, which complicates reaching collective ecological 

knowledge. In high density networks it is more likely that the agents reach collective 

ecological knowledge, but due to (negative) social information sharing conditional 

cooperators could be triggered to start defecting as well. 
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5. Results 
5.1. The baseline model (S1) 

This chapter describes the results of the four simulation scenarios. The simulations showed 

that increasing the social network density affected the sustainability of the natural resource. 

The baseline model had no agents with prosocial preferences, and no agents with initial 

sustainable knowledge. As expected, the natural resource was on average depleted after four 

rounds. The social network density did not affect the outcomes of the baseline model, because 

there were no conditional cooperators active in the simulation. Agents would choose the 

individual extraction always over the group extraction. A community with only defectors is 

unlikely to sustain their natural resources. 

 

5.2. The effect of social information sharing on collective action (S2) 
Increasing the social network density affects natural resource sustainability negatively in the 

social information sharing scenario. Figure 8 shows that the natural resource stock decreases 

at a faster pace in simulations with a higher social network density. A conditional cooperator 

only defects when he has negative social information about his partners. In a simulation with 

a higher social network density, there is more social information sharing, which triggered 

conditional cooperators to defect in an environment with defectors.  

 
Figure 8: Development of the natural resource stock in scenario 2. The colors show the density in the simulations (blue = 0, 

orange = 0.025, grey = 0.05, yellow = 0.1, blue = 0.2, green = 0.4). Each dot represents the average natural resource stock 

of 10 simulation runs on the relevant time point. 
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If an agent free rides in a simulation with a social network density of 0, only the agents in his 

group create a negative memory link towards him. But when the social network density is 

higher, more agents learn about his behavior. Increasing the social network density increases 

the visibility of agents’ choices. Figure 9 and figure 10 are graphs from the Netlogo model 

interface and show the cooperation plot and the reputation of the agents after one round. Both 

simulations have a similar cooperation plot, but the reputation histograms are different. In the 

simulation with a social network density of 0.4, agents that cooperated have a high reputation 

value, and agents that defected have a low reputation value. Agents without prosocial 

preferences are not triggered to cooperate, because in this simplified model there is no 

incentive for them to care about their reputation. However, agents without prosocial 

preferences are triggered to defect when they learn that other agents are not contributing to the 

maintenance of the public good. As expected, the increased visibility of actors’ behavior does 

not support sustainability of the natural resource. 

 

Figure 9a: Cooperation plot of the agents after the first round.  Figure 9b: Distribution of agents’ reputation after 1 round 

on a social network density of 0.4 (55 agents with prosocial preferences). 

 
Figure 10a: Cooperation plot of the agents after the first round. Figure 10b: Distribution of agents’ reputation after 1 round 

on a social network density of 0.025 (55 agents with prosocial preferences). 

 

5.3. The diffusion of ecological knowledge (S3) 
Increasing the social network density impacts sustainability of the natural resource positively 

in the ecological knowledge sharing scenario. Figure 11 shows that agents were more often 

able to reach the desired state of the natural resource in simulation runs with a higher social 
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network density. It can take several rounds before agents find the desired state. In simulations 

with no ecological knowledge sharing, it takes a considerable amount of time before all agents 

reach this desired state. In simulation runs with a higher social network density, agents share 

their ecological knowledge once they find the desired state. However, simulations on all 

density levels sustained the natural resource because a group of conditional cooperators will 

never fully overexploit the natural resource. They might over or under extract based on the 

incorrect individual knowledge, but their individual knowledge cannot reach below 0. 

 

 

Figure 11: Development of the natural resource in scenario 3. The colors show the density in the simulations (blue = 0, 

orange = 0.025, grey = 0.05, yellow = 0.1, blue = 0.2, green = 0.4). Each dot represents the average natural resource stock 

of 10 simulation runs on the relevant time point. 

 

 

5.4. The complete model (S4) 
In the last scenario, we implemented both information spreading mechanisms. We expected 

that increasing the social network density would have contradicting effects through social and 

ecological information sharing, meaning that it would not necessarily improve natural 

resource use. We ran the simulation with 55 conditional cooperators and the results have been 

visualized in figure 12. We observed that the agents were not able to sustain the natural 

resource on any social network density. In the simulations with a low social network density, 

agents were not able to collectively learn how to extract sustainably. This in combination with 

a group of defectors led to depletion of the natural resource. When we increased the social 

network density, more agents had access to ecological knowledge, but due to social 

information sharing conditional cooperators were triggered to defect which also led to 

depletion of the natural resource. Figure 13 shows the group knowledge in simulations with a 
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Figure 12: The development of the natural resource stock on different social network density levels in scenario 4. The colors 

show the density in the simulations (blue = 0, orange = 0.025, grey = 0.05, yellow = 0.1, blue = 0.2, green = 0.4). Each dot 

represents the average natural resource stock of 10 simulation runs on the relevant time point. 

 

Figure 13a: Group knowledge of the groups in a simulation with a social network density of 0.4. Figure 13b: Group 

knowledge of the groups in a simulation with a social network density of 0.025. Each colored line is the formed combined 

knowledge of one group over time (agents are not stuck to one group but change each round). The area between dotted lines 

is the sustainable group knowledge. 

social network density of 0.4 (a) and 0.025 (b). More groups are able to form a sustainable 

group knowledge in the simulation with a social network density of 0.4 than in the simulation 

with a social network density of 0.025. In this scenario the planned group extraction does not 

equal the actual extraction, because the agents without prosocial preferences do not choose 

the group extraction. This disturbs the reflection process because agents are not always able to 

see whether their group extraction was accurate. Without ecological knowledge sharing, 

agents are not able to collectively gain ecological knowledge and manage the natural 

resource. As expected, the simulation results demonstrate that changing the social network 

density affects the sustainability of natural resources in contradicting ways. This demonstrates 

the complexity of natural resource communities and how interfering with them can have 

unintended consequences. 

The simulation demonstrates that social information spreading affects collective action, 

because conditional cooperators receive negative information about other agents. This 
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suggests that there might be a tipping point in the number of initial conditional cooperators 

within the simulation beyond which more social ties may become beneficial for collective 

action. We ran an additional simulation with 56 and 57 conditional cooperators and 

represented the results in figure 14. The results demonstrate that high density networks 

perform better with more conditional cooperators. There is a tipping point at 56 conditional 

cooperators after which there is mostly positive social information sharing. In this case, a high 

social network density is beneficial for the sustainability of natural resources because 

ecological knowledge is more accessible, and an increased spread of positive reputational 

information promotes cooperation by conditional cooperators.  

 

Figure 14: The development of the natural resource stock on different social network density levels with 56 (left graph) and 

57 (right graph) conditional cooperators. The colors show the density in the simulations (blue = 0, orange = 0.025, grey = 

0.05, yellow = 0.1, blue = 0.2, green = 0.4). Each dot represents the average natural resource stock of 10 simulation runs on 

the relevant time point. 
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6. Discussion and conclusion 
For this thesis we developed an agent-based model to demonstrate how the social network 

density could affect social and ecological information sharing and thereby natural resource 

use. There is a growing body of literature on how the social network density affects 

cooperation through social information sharing (Alexander, 1987; Bodin & Crona, 2008; de 

Olivera et al., 2015), and how the social network density affects ecological information 

sharing and thereby natural resource use (Bodin & Norberg, 2005; Turner et al., 2014; Schill 

et al., 2016). However, both information sharing structures have to our knowledge not yet 

been studied in the same context. We implemented an information sharing structure in a 

simulation of a maintenance public good game, to analyze how the diffusion of ecological and 

social information would affect natural resource use. In this chapter, we start off by giving a 

summary of the model results, and we discuss the limitations of the results and its 

implications. 

 

6.1. Summary of the findings 
Firstly, our simulation results demonstrated that increasing the social network density can 

negatively affect collective action. In simulations with a higher social network density there is 

more social information sharing, which gives agents a clearer idea of who are cooperators and 

who are free riders. In an environment with defectors, social information sharing triggered 

conditional cooperators to stop cooperating and start defecting. More social information 

sharing did not activate the indirect reciprocity mechanism (Alexander, 1987), because agents 

without prosocial preferences did not care about their reputation. This model reduced 

complexity of natural resource communities, which led to the exclusion of social control or 

punishment. This simplification suggests that without those factors, social information sharing 

could affect collective action negatively. Secondly, our simulation demonstrated that 

increasing the social network density can affect the diffusion of ecological knowledge 

positively. In simulations with a low social network density, agents took more time to find the 

desired state of the natural resource. Increasing the social network density supported 

ecological knowledge sharing and the agents were able to find the desired state of the natural 

resource at a faster pace. Lastly, the simulations with both information sharing mechanisms 

demonstrated that increasing the social network density does not necessarily impact natural 

resource use positively. Even though, increasing the social network density made ecological 
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knowledge more accessible, it also triggered conditional cooperators to free ride. Interfering 

with the number of social ties had negative implications for the sustainability of the natural 

resource, because more information spread has a contradicting effect on the sustainability of 

natural resources. However, our simulations with more conditional cooperators demonstrated 

that there is a tipping point in the number of initial conditional cooperators after which a high 

social network density is also beneficial for collective action. If actors mainly share positive 

evaluations about others, conditional cooperators continue cooperating. 

 

6.2. Limitations 
The simulation results have limitations that need to be addressed. Firstly, because the model is 

a simplification of the real world, possible influential factors have been left out. In our model 

agents without prosocial preferences are not directly affected by their reputation. Even though 

in reality people can get socially punished for having a poor reputation. Because there was no 

punishment for having a low reputation value, agents without prosocial preferences were not 

affected by their reputation and were not avoiding a low reputation value. Examples of social 

mechanisms that promote cooperation via reputation are meritocratic matching and partner 

selection. Heinrich et al. (2015) implemented a meritocratic matching system in a contribution 

model to see how fuzziness about the behavior of others would affect cooperation. 

Meritocratic matching is group matching based on an actor’s contributions to the public good. 

The model demonstrated that less fuzziness led to more cooperation, because they could more 

accurately match cooperators with each other. With this type of matching cooperators can 

survive because free riders are excluded from their groups. Partner selection is another 

mechanism that can promote cooperation via reputation. Vilone et al. (2016) demonstrated 

with their model that cooperation can survive if actors are able to select their own partners. 

When actors preferably partner up with actors with a good reputation, free riders will be 

excluded by cooperators. The partner selection mechanism promotes to act cooperative 

because people do not want to be excluded. Model simulations demonstrated that, with the 

implementation of a social network in combination with a partner selection algorithm, sharing 

evaluations about actors’ behavior can affect cooperation positively (Giardini & Vilone, 

2016). Based on social information, actors can select with whom they want to partner up. The 

more information an actor has, the more accurately he can select cooperators as his partner 

and reject free riders. Social information sharing lowers the chance that actors can free ride 

without social consequences, which makes cooperation the more electable option. Other 
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model simulations of a public good game tested different reactive strategies on free riding 

behavior and demonstrated that punishing free riders by rejecting them as a partner is more 

efficient for reaching cooperation than defecting (Giardini et al., 2013). The implementation 

of only one reactive strategy on free riders (defection) might not be a perfect representation of 

how actors could deal with free riders, and it would be interesting to implement different 

reactive strategies in future extension of the model. However, it is important to consider the 

possibility that more social information sharing will not always stimulate cooperation. To 

activate the indirect reciprocity mechanism (Milinski, 2016), there needs to be consequences 

for free riders. Without this, increased social information sharing could indeed demotivate 

conditional cooperators (de Olivera et al., 2015). 

Secondly, agents only shared sustainable ecological information. The correct information 

might not be so clear in reality and unsustainable information might also be shared. In our 

simulation, the homogenization of knowledge was not a problem, because agents only shared 

sustainable information. However, much ecological information sharing can also affect the 

sustainability of natural resources negatively. When agents have incorrect knowledge, the 

homogenization of knowledge could be problematic (Bodin & Norberg, 2005). 

Thirdly, agents without ecological knowledge always adopted ecological knowledge from 

their social relations, but whether people adopt new information might depend on their source 

of information and their own adoption threshold. Some people might adopt new information 

at a fast pace, while others will only be convinced by new information when most people 

around them also accepted this information (Rogers, 1958; Diederen et al., 2003). If people 

will only adopt new information if 33% of their social environment did as well, network 

embeddedness could slow down the diffusion of new information (Centola, 2007). If an actor 

has many social relations, more people in his social environment need to adopt the new 

information to reach the threshold of 33%. 

Fourthly, we assumed that agents could perfectly observe the behavior of their partners in the 

public good game. However, in reality the behavior of other actors might not be so 

observable. In natural resource communities, actors might not be able to perfectly observe the 

behavior of other extractors, or they might only be able to reflect on the resource stock over 

time. The aim of this model was to theorize about how sharing of social and ecological 

information could work in the same context. We could have implemented different 

observation mechanisms like imperfect observations, or that the agents generalized the 

behavior of their partners based on (partial) natural resource outcome, but we chose to 

implement a perfect observation system to stress the effect of social information sharing on 
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natural resource sustainability. However, adding fuzziness to observations could create a more 

realistic representation of the real world and it would be interesting to implement this in future 

extension of the model. 

Lastly, the relational approach could have been used in several ways. We focused on the 

density of ties and chose to model homogeneity in network positions of the agents to decrease 

randomness in the model. However, we could have considered different network structures 

(brokerages, structural holes), strength of ties, or contagion processes. Implementing 

additional social network features could help us to study the role of social networks in natural 

resource sustainability. 

 

6.3. Implications 
The insights of this thesis have implications for further research on sustainability of natural 

resources. The simulation demonstrated that under certain circumstances changing the social 

network density can have contradicting effects on natural resource use. To simplify natural 

resource communities, we left out possible relevant factors like social punishments and the 

diffusion of incorrect knowledge. We should continue to study these factors, because they can 

moderate the effect of the social network density on the sustainability of natural resources. 

We suggest a possible extension of the model in which a form of social punishments and the 

possibility of incorrect knowledge sharing will be implemented. The next step is to test this 

theory in the real world by studying natural resource communities. The social network study 

in Kenya is a perfect example of how the complexity of natural resource communities can be 

studied (Bodin & Crona, 2008). They combined social network analysis with interviews about 

perception of resource use. The interviews could explain the effect of the social network 

density on natural resource use. Combining empirical social network analysis with qualitative 

questionnaires can help us understand how norms and perspectives moderate the effect of the 

social network density on natural resource use. We need to keep developing our 

understanding of complex social-ecological systems like natural resource communities before 

we can interfere with them. Social network interventions can be used to make communities 

more efficient or prevent people from free riding by changing the social network structure 

(e.g., increasing connectivity with the goal to stimulate social cohesion (Valente, 2012)). 

However, the simulations results demonstrated that changing the social network density can 

lead to unintended consequences for natural resource use. We suggest that policy makers do 

extensive research before they interfere with the social network structure of a natural resource 

community. Natural resource communities are unique groups of people with their own 
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qualities and weaknesses. Applying a general intervention on multiple natural resource 

communities could affect the sustainability of some of the communities negatively. For 

example, increasing the social network density could have negative consequences on 

cooperation if actors are not aware of the risks of overexploitation (Bodin & Crona, 2008). 

Understanding a community’s rules, norms and values regarding natural resource use is 

necessary to be able to effectively help them with sustaining their natural resources. 

 

6.4. Conclusion 
This thesis studied the effect of changing the social network density of communities on 

natural resource use. We combined the effects of social information and ecological knowledge 

sharing on natural resource use to analyze how both mechanisms together affect natural 

resource use. The concept of studying socio-ecological systems like natural resource 

communities by modeling a behavioral experiment was inspired by AgentEx (Schill et al., 

2016). AgentEx demonstrated with their model that ecological knowledge is needed to extract 

sustainably. We followed up on this finding by implementing a social network structure to 

study how the social network density affects natural resource use. We demonstrated that 

increasing the social network density gives more actors access to ecological knowledge. 

Without ecological knowledge sharing it can take a considerable amount of time before actors 

understand natural resource dynamics, which can be problematic for sustaining natural 

resources. We combined the ecological knowledge sharing with social information sharing 

because many studies showed the importance of reputation in social dilemmas (Giardini & 

Wittek, 2019; Milinski, 2016; Nowak, 2006). We modeled a group of agents playing a 

maintenance public good game with a social and ecological information sharing structure. Our 

model demonstrated that changing the social network density has contradicting effects on the 

sustainability of natural resources. Increasing the social network density gives more actors 

access to ecological knowledge but can also trigger conditional cooperators to defect when 

there are no social punishments for free riding. The insights of our model demonstrate the 

complexity of natural resource communities. There is no simple answer to our research 

question, because the effects of changing the social network density on natural resource use 

depend on multiple factors like norms, perceptions, available knowledge, etc. To be able to 

help natural resource communities in sustaining their natural resources, we must continue to 

study how these factors can moderate the effect of the social network density on natural 

resource use. 
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Appendix 
Design concepts 
Table 5 gives a description of the design concepts of the model. 

Table 5 

Design concepts 

Theoretical 

background 

behind the 

model 

We based the simulation rules on theories from the field of public good 

games, rational choice theory, social networks, and natural resource 

management. 

 

Agents share social and ecological information with other agents through 

their social ties. Studies found that people share ecological and social 

information with people close to them (Abrahamson & Rosenkopf, 1997; 

Isaac, Erickson, Quashie-Sam, & Timmer, 2007), and that people most 

likely adopt new information from people close to them (Centola, 2007). 

 

The agent attribute prosocial preferences is based on extended rational 

choice theory. In behavioral experiments participants cooperated even 

though free riding would give them a higher pay off (Fehr & Fischbacher, 

2002), which could be explained by that people have in some extent 

aversion to inequality (Herreiner & Puppe, 2010). 

 

An agent’s decision to cooperate or to free ride is affected by the social 

information he has about their partners. We modeled this, because 

experiments showed that conditional cooperators are more likely to 

cooperate when they believe that their partners cooperate as well (Rustagi, 

Engel, & Kosfeld, 2010). This also means that conditional cooperators can 

get triggered to stop cooperating when they receive negative social 

information about their partners (de Olivera, Croson, & Eckel, 2015; 

Hartig, Irlenbusch, & Kölle, 2015). 

Learning Agents can update their individual knowledge after interaction with other 

agents or by reflecting on how the natural resource stock responded on 

their extraction. Agents also receive social information that affects their 
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decision-making. However, the decision rules are fixed, and the agents are 

not able to learn in this area. 

Sensing Agents sense the (partial) natural resource stock size. Agents sense that if 

their partial natural resource stock regrows with 9 units, they reached a 

sustainable state. They sense this because with a regrowth function of 9, 

the partial natural resource stock regrows to the starting partial stock of the 

resource (34 or higher). 

Predicting An agent makes a prediction of the behavior of his group members based 

on the social information he has about the other agents. 

Interaction Agents interact with other agents in three different ways. The first 

interaction is during the maintenance public good game, where agents 

combine their individual knowledge to form a group knowledge. The 

second and third interaction are the social and ecological information 

sharing, which depends on the social ties between agents. 

Collectives The natural resource stock is the collective good. The agents fail to sustain 

the natural resource when the stock is 0. The partial natural resource stock 

is temporarily the collective good for a group and agents extract 

collectively with their group members from it. 

Every group forms a group knowledge, which is the collective knowledge 

that determines whether they are able to estimate a sustainable group 

extraction or not. 

Heterogeneity Agents are heterogenous in their prosocial preferences, individual 

knowledge, and reputation. 

Stochasticity Agents start with a neutral reputation and initial individual knowledge, but 

those variables can develop over time when they interact with other agents. 

The group formations and the natural resource stock also develop over 

time. Those stochastic factor are needed to study how agents affect each 

other’s behavior over time. 

Observation We observed the state of the natural resource stock at seven time points in 

a simulation run: at the start, after 1 round, after 10, after 20, after 30, after 

40, and after 50. We compared how the natural resource stock develops on 

different social network densities.  
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To demonstrate how the diffusion of reputation and ecological knowledge 

affect the sustainability of natural resources we measured the behavior of 

agents (cooperation plot), and their reputation. With those measurements 

we analyzed how the social network density affects cooperation through 

social information sharing. We also measured the diffusion of ecological 

knowledge and the formed group extractions to analyze how the social 

network density affects the spread of ecological information. 

   
 


