5 June 2024

Wealth and Generosity in Rural Colombia

"What is the relationship between wealth and generosity within the rural Colombian context?"

Femke Heeling - S3086054

f.s.heeling@student.rug.nl

Bachelor Sociologie – Rijksuniversiteit Groningen

2023 - 2024

Supervisor: Daniel Redhead

Wealth and Generosity in Rural Colombia

Inhoud

Abstract	3
Introduction	3
Theory	5
Costly signalling	6
Interdependence	7
Relationship influences	7
Control variables	
Community differences	
Method	9
Sample and community characteristics	9
Coastal	
Lowland	
Highland	
Altiplano	
Subsistence and labour	
Internal displacement due to violence	
·· · · · · · · · · · · · · · · · · · ·	
Data collection and procedure	11
Data collection and procedure Rich economic games	
Data collection and procedure Rich economic games Variables	
Data collection and procedure Rich economic games Variables Analysis plan	
Data collection and procedure Rich economic games Variables Analysis plan Results	
Data collection and procedure Rich economic games Variables Analysis plan Results Networks	
Data collection and procedure Rich economic games Variables Analysis plan Results Networks Descriptive statistics of variables used within the analysis	
Data collection and procedure Rich economic games Variables Analysis plan Results Networks Descriptive statistics of variables used within the analysis Model fitness	
Data collection and procedure Rich economic games Variables Analysis plan Results Networks Descriptive statistics of variables used within the analysis Model fitness Hypotheses and models	
Data collection and procedure	
Data collection and procedure Rich economic games Variables Analysis plan Results Networks Descriptive statistics of variables used within the analysis Model fitness Hypotheses and models Discussion and conclusion Bibliography	
Data collection and procedure	11 12 12 12 12 14 15 15 15 15 15 18 22 23 29 30 34 34 34 34

Variable 5: Friendship	42
Variable 6: Generosity	46
Variable 7: Community	49
Without missing data	50
Appendix 2	55
Bivariate statistics	55
Models	64
Extra analysis without sex	
Appendix 3	
Assumption 1: Independent observations	
Assumption 2: Normal distribution of residuals	
Assumption 3: Linear relationship	
Multicollinearity	
Outliers and influential points	

Abstract

The relationship between wealth and generosity has been studied in the past, but has resulted in mixed result and competing theories. Meanwhile most research has been done within a WEIRD-context (Western, Educated, Industrial, Rich, and Democratic). The goal of this thesis was to find out what the relationship is between wealth and generosity within a non-WEIRD context, specifically Rural Colombia. The dataset used was collected by Redhead and colleagues. It contains data from four different villages. Generosity was measured with the RICH economic allocation game, a method that yields data embedded within the community itself. The variables sex, age, kinship and friendship were including for a more in depth analysis. Results were mostly inconclusive and a network analysis is recommended for future research.

Introduction

In the last decades wealth inequality has grown to new extreme proportions. Today, there are more billionaires on earth than ever before in human history (NOS, 2024). Levels of wealth inequality are in some countries on the same level as they were before the first world war (Piketty, 2017). For example, in the Netherlands the income and wealth inequality has grown a lot over the last decennia and there are large differences between generations (Afman, 2020). In some countries, like Colombia, inequality is even bigger, with 10% earing around 40% of the income within the country (Colombian Reports, 2023). Wealth inequality has been a topic of interest within sociology since the very beginning. One of the first authors who wrote about wealth inequality is Karl Marx (Moham, 2022). Marxian theory see the root of economic inequality in the distribution of capital and labour. His critique stats that although workers offer the labour that actually produces value, most profits go to the owners of capital. The debate around wealth and wealth inequality has continued ever since, but the mechanisms at play are still not completely understood.

Research about the relationship between wealth and generosity shows mixed results. Some findings suggest a positive relationship (Cardenas, 2003; Piff et al., 2010), were others find a negative one (Gintis et al., 2001). Generosity is a type of pro-social behaviour were individuals share or give away resources without direct reciprocity from the other party (Klapwijk & Van Lange, 2009; Smith & Davidson, 2014). When it comes to material wealth, someone can be seen as generous when they share or give away a significant part of their wealth. Here we bump in to some subjectivity, because what is seen as generous is often decided by other people and less so by an objective measurement. What is seen as generous depends on the environment and culture this behaviour is seen. For example, sharing food with someone you do not know, might be seen as generous by some cultures, but may be a norm within other cultures.

A lot of research has been done about the relationship between wealth and generosity. However, like in many cases, most research has been done within a WEIRD context (Henrich et al., 2010). WEIRD is an acronym meaning: Western, Educated, Industrial, Rich and Democratic. Individuals from a WEIRD society are often more easy to reach. They are well connected, often close to the researchers themselves, and most of the time are more willing to participate. However, this is a problem in the case of generalizability of findings within social sciences. One example is the research done by Haidt (2012) about moral psychology. Haidt found that WEIRD individuals are far more liberal then people in general and where more likely to accept so called harmless taboos.

It would be easy to imagine that different social mechanism are dominate within a non-WEIRD context compared to a WEIRD context, especially within a poorer population sample compared to a richer one. Taking a closer look at these non-WEIRD individuals will give us a deeper understanding the variation of human behaviour in relation to the societal context they live in. It can show us which social mechanism are at play when looking at the relationship between wealth and generosity within a non-WEIRD context.

The aim of this thesis is to examine the relationship is between wealth and generosity within the context of rural Colombia. By focusing on the rural Colombian context, a better understanding can be gained of the mechanisms at play within this cultural context. Rural Colombia is an unique non-WEIRD context (Redhead et al., 2023; Redhead et al., 2024). Colombia is not a cultural western country and ethnically diverse. Individuals in rural Colombia are less educated, but more importantly less wealthy and less industrialized. Rural Colombian communities are not only less wealthy in comparison to the western world, they are also less wealthy in comparison to urban Colombian communities (Colombian Reports, 2023). Although some areas have some level of industrialization or market integration, other parts still live of small scale agriculture, fishing, horticulture and hunting. The four communities who were studied for the data I used within the thesis fit the characteristics stated above. I plan to test if there is a positive of negative relationship between wealth and generosity within these communities. I will use the data collected by Redhead and colleagues, with 467 respondents across four different villages. Moreover, I will look at what role sex, age, friendship and kinship play within this relationship and try to look at the differences between these villages. In sum, this leads us to the following research question:

"What is the relationship between wealth and generosity within the rural Colombian context?"

4

Theory

Generosity is closely related to cooperation. Cooperation an individual helps others by investing time or paying another cost. This can be as small as doing the dishes together and as big as combating climate change. Cooperation is not only a human activity, in fact all social animals cooperate in variating degrees (Waal, 2020). Great apes, like chimpanzees and bonobo's, cooperate in ways which are very similar to us humans. They share food, take care of each other's children, make friends and even make alliances within the group to gain influence. Behavioural biologist believe cooperation is rooted within our evolution (Jaeggi & Gurven, 2013; Nowak, 2006). Cooperation increases the survival changes of individual and the group.

Although cooperation in most cases lead to a better outcome, it is often unsuccessful. This may happen due to failed attempts, but in many cases individuals choice actively not to cooperate. The best way to understand this is with the theoretical framework known as the prisoners dilemma (Van Vugt & Van Lange, 2006; De Graaf & Wiertz, 2019). The prisoners dilemma is a specific situation in game theory. Game theory is a theoretical framework used in economics, psychology and sociology. Game theory looks at the choices individuals or players make in situations, which are named games. Game theory states that players make choices based on the pay-off they will receive. Important to note is that these choices are conditional, the pay-off is dependent on the choice other players make. The most used version of game theory is the so called prisoners dilemma. Here, two individuals or players face a social dilemma where they have the option to either cooperate or defect. Their options are shown in in table 1 below. The hypothetical pay-off value for each action is reported. It is important to note that these choices are conditional, meaning the pay-off depends on the choices both players make. If both cooperate, the pay-off value is 2 per player and 4 in total. However, because the pay-off is conditional, defecting when the other person cooperates has a greater pay-off of 3. If the other player defects, it is also better to defect, because a pay-off of 1 is still higher than 0. This means the best option on the individual level is always to defect, but the best option for all is actually to cooperate.

		Player 2 (al	ter)		
		Cooperate	(C)	Defect (D)	
Player 1 (ego)	Cooperate (C)	2, 2	С, С	0, 3	C, D
	Defect (D)	3, 0	D, C	1, 1	D, D

Table 1: Example of a prisoner's dilemma, pay-off value for each strategy is reported in each cell

In theory the dominate strategy is to always defect, which explains why cooperation doesn't always happen. Cooperation requires trust in the other individual, trust in the fact the other one will

cooperate as well. In most cases cooperation happens more than ones. Every time cooperation is successful, trust is reinforced. The opposite is true as well, defecting reinforces distrust.

Like cooperation, generosity is a type of pro-social behaviour, meaning it increases social relationships in a positive way (Klapwijk & Van Lange, 2009; Smith & Davidson, 2014). There are some differences however. Cooperation is based on reciprocation, both individuals can work towards a better pay-off for both parties. This can happen simultaneously or with social favours. Generosity differs in that the reciprocity is not automatically implied. Doing something generous implies doing or giving something without automatically being reciprocated. Often generous giving is believed by the recipient to go further than socially necessary. In terms of game theory, this means choices are not conditional. A player who is generous choices to cooperate, regardless of the choice other players make.

Costly signalling

Generosity might however not immediately be reciprocated, it might still be benefitable to the generous sender. Being perceived as generous can have a positive effect on the reputation of an individual (Gintis et al., 2001; Nowak, 2006). Reputation is a mechanism that shows others what kind of person you might be. It is a collective idea within the community of an individual, which is spread by gossip. By being generous, others may perceive you as a generous person, which may give you a reputation of a generous or trustworthy individual. Of course it might built trust with the individual who received a generous gift, the effect be more defuse as well. Reputation can be a stand in for trust when direct knowledges of an individual is missing. Someone might not personally know if someone is trustworthy, but a positive reputation of someone within the community might pursue someone to trust them anyway.

Giving generously could be used to signal to others you are a trustworthy individual. This mechanism is described as costly signalling (Gintis et al., 2001; Bird et al., 2001). The signal is costly due to the high cost of generous giving, it takes a lot of money or resources to show others if you are a good quality partner to cooperate with. Due to this high cost, it likely that wealthier individuals are more able to signal. This leads me to my first hypotheses:

H1a: Wealthier individuals are more likely to show generous behaviour.

Interdependence

Cooperation is not always necessary. In some situation, individuals are able to reach goals without help from others. Cooperation can be a risky strategy, because it is not always clear if cooperation is reciprocated. However in some situations cooperation can be the only option to survive. If cooperation is necessary depends on the individual context and access to alternatives (Piff et al., 2010; Cardenas, 2003; Keltner et al., 2003). Wealth is one way to avoid cooperation, someone can simply buy their way out of a social dilemma. For poorer individuals this is often not an option, so cooperation is a greater necessity. Due to this, poorer individuals are often more interdependent on each other for help and other resources. If individuals are more dependent on each other to survive, it might be beneficial to be generous when sharing. If you are seen as more generous, you are more likely to be trusted by other. This leads me to my second hypothesis, which is opposite to the first one:

H1b: Wealthier individuals are less likely to show generous behaviour.

Relationship influences

Cooperation is easier when individuals know and trust each other. Two types of relationship are most likely to play some role when it comes to the relationship between wealth and generosity. First off, individuals are more likely to be generous toward family members (Nowak, 2006; Jaeggi & Gurven, 2013). Families are often the closed individuals to us and family members are in many cases trusted. Evolutionarily it also makes sense to be generous to family members due to shared genes. If someone helps out family members, they are in a way helping out part of a shared gene pool which increases the survival rate for those genes. Friendship is the second type of relationship. Friendship can mean a lot of different things for different people, but in general people like to spend time with their friends (Redhead et al., 2023). Generosity toward friends helps to reinforce friendship and makes reciprocated pro-social behaviour even more likely.

Kinship or family is often a source of wealth, because wealth is often shared within families and households. Therefore I believe kinship has a spurious effect on the relationship between wealth and generosity. Friendship might be partially influenced by wealth, either because wealth might attract more friends, or because similar levels of wealth might make friendship easier due to a shared social class identity (Keltner et al., 2003). My hypotheses for these variables are:

H2: Part of the effect of wealth on generosity can be explained by a spurious effect of kinship H3: Part of the effect of wealth on generosity can be explained by a mediation effect of friendship

Control variables

Age and sex may have some effect on wealth and generosity. Wealth is often accumulated within a lifetime, which means older individuals are more likely to own more material wealth (Kapteyn et al., 2005). Older individuals are also more likely to be generous due to less immediate need for resources. Teenagers and young adults often are in a developmental phase where they place themselves before others (Siegler et al., 2014).

The gender wage gap is worldwide still a significant issue. Women are paid less then men on average, so it is likely that men accumulate more wealth as well (Blau & Kahn, 2017). The relationship between sex and cooperation is often different between situations. These are often triggered by network structure differences and associated gender identities (Sell & Kuipers, 2009).

Community differences

Finally I believe there will be some differences between the four communities. There is a lot of variation between these communities, because of different subsistence practices, geographic isolation and internal displacement due to violence (Redhead et al., 2023; Redhead et al., 2024). Unlike friendship and kinship, these factors are difficult to quantify, but can absolutely play a role. These factors may lead to a shared identity, shared values or increased interdependence (Kadushin, 2012). It is difficult to say how these factors influence the relationship between wealth and generosity, but I do believe there is some influence. This leads met to my last hypothesis:

H4: The effect of Wealth on Generosity differs between the four communities.

Figure 1: Graphic visualization of research model

Method

Sample and community characteristics

The dataset used was collected by Redhead and colleagues. The sample contains 467 respondents from four different villages within Colombia (Redhead et al., 2023; Redhead et al., 2024). These communities are:

- A coastal Afrocolombian/ Emberá community (n = 117)
- A lowland Afrocolombian/Emberá community (n = 149)
- A highland Mestizo community (n = 65)
- An Altiplano Mestizo community (n = 136)

Henceforth these communities will be named by their geographic signature: the coastal, lowland, highland and altiplano communities. All adult residents from these communities where asked to participate and the non-response was actually quite low. Almost everyone from the coastal, lowland and highland community participated and three-quarters of the altiplano community participated. Informed consent was obtained for all respondents, although in some cases this was done verbally due to low literary rates. The communities have some differences when it comes to ethnic

composition, geographic isolation, subsistence and labour practices and internal displacement due to violence.

Coastal

The coastal community is the most isolated of the four communities. They require a long-distance boat or air trip to reach. 53% of the respondents identified as woman, the average age is 39,8 years (*SD* = 15,6), median household wealth is 5880, and 68% identified as Afro-Colombian, 24% as Emberá, 7% as Mestizo, and one individual as Afro-Emberá.

Lowland

The lowland community is still relatively isolated, but can be reached by bus within three to four hours. The community is located in the rainforest in the west of Colombia. It is relatively close to the highland community, only a 40 minutes bus ride. 61% of the respondents identified as woman, the average age is 46,3 (*SD* = 18,4), the median household wealth is the lowest of all four communities with 4350, and 78% identified as Afro-Colombian, 14% as Emberá and 12% as Mestizo.

Highland

As mentioned before, the highland community is relatively close to the lowland community, and therefore also relatively isolated. 55% of the respondents identified as woman, the average age is 37,0% (*SD* = 17,4), the median household wealth is 5455, and 94% identified as Mestizo, 4,6% as Afro-Colombian, and one individual as Emberá.

Altiplano

The Altiplano community is the least isolated of the four communities. It is only a 1,5 hour bus ride away from the capital Bogotá. 60% of the respondents identified as woman, the average age is 39,1 (*SD* = 16,6), and all respondents identified as Mestizo. The median household wealth was by far the highest with 10630, but compared to the urban area this is still relatively low.

Subsistence and labour

Fishing and local wage labour are the primary subsistence and labour practices within the community. To a lesser extent, there is some hunting, horticulture and animal husbandry as well. By selling some fish, there is a limited amount of market integration. The lowland community lives of a mixture of horticulture, local wage labour, hunting, animal husbandry. Artisanal gold panning, a small scale form of mining by filtering gold from rivers, is also practiced. In both communities, market integration is limited and mostly focuses on self-reliance.

The highland and Altiplano community are more market integrated. The highland community is based on small-scale agricultural production of coffee and sugarcane. The altiplano community is lives primarily on wage labour, mostly within large-scale flower cultivation.

Internal displacement due to violence

The coastal and lowland communities have been greatly affected by the internal conflicts within Colombia over the years. Due to this, a lot of individuals are internally displaced. The highland community lays on the border of former guerilla territory. The altiplano community meanwhile lays distant from these conflict zones. Together with the other differences a clear association can be seen between these factors. The coastal and lowland communities are geographically isolated, are mostly self-reliant and are the most affected by internal violence. Meanwhile, the altiplano community and to a lesser extend the highland community, are better connected, more market integrated and less affected by internal violence. It is also imported to note that the ethnic composition is really different between the mostly Afro-Colombian and Emberá communities, and the Mestizo communities. Furthermore, the relative distance from the violence in the Altiplano community might also explain the somewhat higher levels of household wealth. It is simply easier to accumulated wealth when the living environment is more stable. Lastly, it should be noted again that while there are some differences between these communities, all of them experience some levels of poverty in comparison with the urban areas in Colombia.

Data collection and procedure

The field work was done in two waves. First, surveys about different demographic and network data were collected. These took place in 2016-2017 for the coastal and lowland community, and in 2018-2019 for the Highland and Altiplano community. In the second wave the data from the RICH economic games where collected. These took place in 2017-2018 for the coastal and lowland community, and in 2018-2019 for the highland and altiplano community. Due to some emigration the number of respondents was somewhat smaller (n = 393; coastal: n = 93; lowland: n = 135; highland: n = 57; altiplano: n = 109).

Rich economic games

Three RICH economic games where preformed during the second data collection. To measure the concept of generosity embedded within the community, the allocation RICH game was used (Pisor et al., 2020). The allocation RICH game is similar to the economic dictator game, which is a measurement instrument for generosity. In it most basic form a player gets a small amount of money. They then have to distribute the money between themself and a secondary player. The player can keep everything, share some money, or even all of it. The second "player" cannot respond within the

dictator game, hence the name of the game, player 1 decides everything like a dictator. This means there is no direct incentive to give any money away, which is ideal when measuring generosity. Giving away money can only be because of generosity.

The allocation game is a bit different from the dictator game. Just like in the dictator game, players where given a small amount of money, they could keep or share, without input from others. The differences is that player could now share their money with other members from the community. This was done by placing money on the photos of individuals within the community, see figure 2 below. If they wanted to share, they could do this with multiple individuals. Furthermore, this means generous giving is now embedded within the community, because money is shared with people they actually know. In the end a network of this data can be constructed that shows who gave who what and how much.

Figure 2: research design for the RICH economic allocation game. Individuals where given a small amount of money they could either keep or share with community members by placing the money on the picture (Pisor et al., 2020).

Variables

The control variables sex and age were measured with a socio-demographic survey. Participants gave their self-reported age and gender identity. Age is measured in years, including months. Sex coded with M for men and F for woman. These have been recoded to: 0 = men and 1 = women.

The kinship network was constructed by asking respondents to name all their parents, children, and siblings. These where given the relatedness value of 0,5. For lower values the degree of separation was used, so if A is the child of B, and B the child of C, it makes A the grandchild of C and has a

relatedness value of 0,25. To create the variable for close kinship the network was dichotomized with all values equal or greater then 0,25 recoded to 1 and all other values recoded to 0. Next, the degree centrality for each node were calculated. These values showed the number of close family member each respondent has within the community, the higher the value, the more close family members each individual has.

The friendship network was measured with the question: "Name whom you spent the most time socializing with" in the month prior to the interview. This created a binary network with: 1 = friendship and 0 = no friendship. It is important to note that the friendship network is not symmetrical, which means not all friendship ties where reciprocated. To construct the friendship variable, the outdegree centrality values where used. The outdegree values were chosen, because for the analysis it matters whether the respondents themselves thought an alter was a friend, and less so if alter agrees with ego or not. The outdegree centrality value is the sum of friendship nominations by alter, or in other words: the count of how many friends the participants thinks they have. Both the variables for kinship and friendship were recoded with the UciNET software.

The variable wealth was measured by giving an estimate monetary value of material items in the participants household, for example: vehicles, computers, refrigerators, livestock, and more. This estimate is the sum of these material items in the local currency. The variable was transformed by taking the logistic function of wealth. The transformation makes the variable a bit more difficult to interrupt, but it does mean there is now a linear relationship between (log)wealth and generosity. If the value of log wealth is one step higher, this means the real wealth increase is a factor ten.

Generosity was measured with the RICH allocation game. Participants were given 10.000 (Highland and Altiplano), 15.000 (Coastal), or 20.000 (Lowland) Colombian peso's. They could allocate this money between different individuals within their community by placing it on photos of the other, keep everything for themselves, or a mix of the two. Money could be allocated between multiple individuals. Generosity was recoded two times, first to a rate by dividing the each value by the maximum possible value for each community. Then, the variable was dichotomized with a cut-off point of 0,5. The new binary variable was used as a dependent variable in the logistical regression.

13

Analysis plan

In order to test the four hypotheses I want to estimate the following models shown in the table below:

	Variables	Dependent	Regression type
Model 1	Sex and Age	Generosity	Logistical regression
Model 2	Sex, Age, and Wealth	Generosity	Logistical regression
Model 3	Sex, Age, Wealth and Kinship	Generosity	Logistical regression
Model 4	Sex, Age, and Kinship	Wealth	Linear regression
Model 5	Sex, Age, Wealth and Friendship	Generosity	Logistical regression
Model 6	Sex, Age, and Wealth	Friendship	Linear regression
Model 7	Sex, Age, Wealth, Kinship, and Friendship	Generosity	Logistical regression
Model 8	Sex, Age, Wealth, Kinship, and Friendship	Generosity	Logistical regression split by community

In order to see what the effect of the control variables is on generosity, I will look a model 1. To test the first hypothesis (H1a and H1b), whether there is a positive or negative effect of wealth on generosity, I will look at the results of model 2. I will also compare the first and second model to control for sex and age.

The second hypothesis is about whether there is a spurious effect of kinship on the relationship between wealth and generosity. The second hypothesis (H2) can be tested by comparing the results form models 2, 3 and 4. First by looking at the previously discussed relationship between wealth and generosity in model 2. Then by looking if there is a relationship between kinship and wealth in model 4. Finally I will look at the difference in the effect size of wealth on generosity within model 2 and within model 3, were both wealth and kinship are included.

The third hypothesis (H3) is about whether there is a mediating effect of friendship on the relationship between wealth and generosity. I will test this hypothesis by again first looking at the effect of wealth on generosity within model 2. Then I will look if there is an effect of wealth on friendship within model 6. Finally, I will compare the effect size of wealth on generosity in model 2 and model 5.

Model 7 is the effect of all variables on generosity. Model 8 is in essence the same as model 7, except that the results are split per community. By comparing the different confidences intervals around the coefficients within models 7 and 8, it is possible to eyeball if the last hypothesis (H4) is true.

Results

Networks

In figures 3, 4, 5 and 6 are the multiplex networks visualized of each community. The colour of the nodes indicates the level of generosity in the allocation game, with green meaning high, red meaning low and white meaning a non-response. The size is the material wealth of the respondent relative to the rest of the community. Solid lines indicated a friendship nomination and dotted lines are close kinship relationships. These networks can give a quick overview of the general characteristics of each community.

Figure 3 shows the multiplex network for the coastal community. There is no clear correlation visible between node size and colour. The combination of both friendship and kinship networks shows three large clusters who are only connected by two friendship ties. In social network literature these are described as bridges, because they bridge the connection between otherwise disconnected groups. Higher wealth does seem to correlate with a more central position within the network, meaning wealthier individual are more connected then others.

Figure 3: Network visualisation of the coastal community

Figure 4 shows the multiplex network for the lowland community. Again no clear association between generosity and wealth is visible. This community seems to be relatively well connected, with no clear clusters and only a handful of isolated individuals.

Figure 4: Network visualisation of the lowland community

Figure 5 shows the multiplex network for the highland community. This community is by far the smallest and looks to be relatively close knit, although there are still some isolates as well. Again, no clear association between wealth and generosity is visible.

Figure 5: Network visualisation of the highland community

Figure 6 shows the multiplex network for the altiplano community. The friendship network is small within the community and most connections are close kinship relations. This means a lot of smaller isolated groups are visible and if kinship clusters are connected this is because of only one or two friendship nominations. Again, no clear association between wealth and generosity is visible.

Figure 6: Network visualization of the altiplano community

The tables below show some specific network descriptives for friendship and kinship. Both the friendship and kinship network of the highland community have the highest density, respectively 0,021 and 0,037. Because the community is also the smallest of the four, it is likely to be a relatively close knitted community. The friendship for the altiplano community is the smallest, with a density of 0,004 and only 68 friendship ties. The transitivity is however relatively high (0,597), which indicated that most friends are also friends with each other's friends. Friendship may play a different role within the altiplano community in comparison to the other communities. Family ties within the altiplano community is relatively average in value compared to the other communities. The kinship network in the lowland community is the least dense of all the communities (0,009), but has the highest number of family clusters. This may indicate relative small family clusters with only the immediate family, like parents and children.

Community	Density	Transitivity	Reciprocity	N Nodes	N Ties
Coastal	0,013	0,214	0,164	117	177
Lowland	0,012	0,134	0,144	149	262
Highland	0,021	0,221	0,178	65	86
Altiplano	0,004	0,597	0,153	136	68

Table 3: Descriptions of friendship network included within the analysis: Density, Transitivity and Reciprocity

Table 4: Descriptions of Kinship network included within the analysis: Density, Number of clusters, Number of nodes and Number of ties

Number of nodes and	Number of ties			
Community	Density	Ν	Ν	N Ties
		Clusters	Nodes	
Coastal	0,019	13	117	260
Lowland	0,009	21	149	200
Highland	0,037	13	65	154
Altiplano	0,020	24	136	372

Descriptive statistics of variables used within the analysis

In table 5 the descriptive statistics are given for the different variables within the analysis. I will briefly discuss some noteworthy details. The rate for generosity is heavily skewed (*median* = 0,90), which indicates that most individuals gave away most of their money in the allocation game and at least 25% gave everything away (Q3 = 1). The network variables friendship (*mean* = 1,62; max = 9) and kinship (*mean* = 2,16; max = 13), are heavily skewed as well. This is meanly because most individuals only have 1 or 2 friends and only a handful of individuals have a lot of friends. Wealth was also heavily skewed, but the log transformation helped to normalize the variation for wealth (*mean* = 3,70; SD = 0,63). There are a lot more female respondents (60,5%), compared to male respondents. The highest proportion of respondents are from the lowland community (34,4%) and the lowest proportion from the highland community (14,3%).

Variable	Mean (Standard deviation)ª	Minium	Q1	Median	Q3	Maximum	N total
Age	42,59 (17,58)	14,33	28,38	40,21	55,71	89,00	392
Generosity	0,79 (0,24)	0	0,70	0,90	1	1	392
Friendship	1,31 (1,62)	0	0	1	2	9	392
Close kinship	2,16 (2,64)	0	0	1	3	13	392
Wealth (log)	3,70 (0,63)	1,3	3,52	3,77	4,12	5,01	392
Sex (Male=0, Female=1)	39,5% male 60,5% female	-	-	-	-	-	392
Community (Coastal=1, Lowland=2, Highland=3, Altiplano=4)	23,7% coastal 34,4% lowland 14,3% highland 27,6% altiplano	-	-	-	-	-	392
Generosity: Binary (Low=0, High=1)	14,8% Low 85,2% High	-	-	-	-	-	392

Table 5: Descriptions of variables included within the analysis: Mean (standard deviation), fivenumber summary and number of respondents (excluding respondents with missing data on one or more cases)

^a In case of categorical variable, the frequencies in percentages are reported instead.

Table 6 shows the same descriptives as above, but split out per community. These can show some important variation between the different communities. Although generosity is high in all communities, there are some differences. The most generous community is the highland community (*mean* = 0,85) and the lowest is the lowland community (*mean* = 0,75). Friendship and kinship show some variation as well. Respondents from the lowland community (*mean* = 1,75) have more then two times as much friends on average compared to the altiplano community (*mean* = 2,91) have more the two times as much close family members compared to the lowland site (*mean* = 1,37). The average of wealth is relatively similar in each community (*means* = 3,61; 3,50; 3,88; 3,94), however the range between the minimum and maximum values does variate a bit. The highest range is the coastal community (*min* = 1,30; max = 5,01), where is the lowest range is in the altiplano community (*min* = 2,48; max = 4,54).

Variable	Mean	Minium	Q1	Median	Q3	Maximum	Com
	(Standard						muni
	deviation) ^a						ty
Age	41,07 <i>(15,72)</i>	19,00	29,88	39,50	50,08	87,83	c
	47,13 <i>(18,33)</i>	18,67	30,08	43,92	63,50	89,00	l b
	38,22 <i>(17,94)</i>	14,33	23,25	34,21	51,83	88,83	" "
	40,51 <i>(16,97)</i>	16,25	24,88	40,58	50,17	81,92	ŭ
Generosity	0,78 <i>(0,24)</i>	0	0,67	0,87	1,00	1	с
	0,75 <i>(0,25)</i>	0	0,65	0,85	0,95	1	1
	0,85 <i>(0,19)</i>	0	0,80	0,90	1,00	1	h
	0,80 <i>(0,27)</i>	0	0,73	0,90	1,00	1	a
Friendship	1,65 <i>(1,86)</i>	0	0	1	3	9	с
	1,75 (1,71)	0	0	1	3	7	1
	1,41 (1,52)	0	0	1	3	5	h
	0,80 (0,27)	0	0	0	1	5	а
Close kinship	2,30 <i>(2,81)</i>	0	0	1	4	10	с
•	1,37 (1,76)	0	0	1	2	7	1
	2,41 (1,98)	0	1	2	4	6	h
	2,91 (3,38)	0	0	2	4	13	а
Wealth (log)	3,61 <i>(0,74)</i>	1,30	3,36	3,82	4,09	5,01	с
	3,50 (0,69)	1,48	3,35	3,62	3,91	4,86	1
	3,88 (0,42)	2,85	3,61	3,74	4,37	4,45	h
	3,94 (0,39)	2,48	3,74	4,05	4,22	4,54	а
Sex	43.0% Male: 57	.0% Female					с
(Male=0.	37.0% Male: 63	.0% Female					1
Female=1)	48.2% Male: 51	.8% Female					h
,	35,2% Male; 64	,8% Female					а
Generosity:	9,7% Low: 90.1	3% High					с
Binary	23.0% Low: 77	0% High					1
(Low=0. High=1)	7.1% Low: 92	9% High					h
(13,0% Low; 87,	0% High					а

Table 6: Descriptions of variables included within the analysis per community: Mean (standard deviation), five-number summary and number of respondents (excluding respondents with missing data on one or more cases)

^a In case of categorical variable, the frequencies in percentages are reported instead.

^c Coastal community; N = 93

^{*I*}Lowland community; N = 135

^{*h*} Highland community; N = 56

^{*a*} Altiplano community; N = 108

In table 7 the correlations between variables are shown. In the upper conner the overall correlations are reported, including community differences. In the bottom conner the correlations for each community are reported. First I will look at the upper conner and secondly at the bottom conner.

Most correlations are relatively small and non-significant. Excluding community differences, the largest associations are between friendship and age (r = 0,117; p < 0,05) and between wealth and kinship (r = 0,120; p < 0,05). This indicates that individuals are more likely to befriend others of the same age, and that individuals with more close family members have more household material wealth.

The largest differences are between the different communities. Generosity (F = 4, 072), Age (F = 5,042), Kinship (F = 7,526), Wealth (F = 13,008) and (F = 17,824), show significant between group differences. In the bottom corner the differences in correlations between communities even more clear. The effect sizes are much greater, and there is a lot of variation between the communities. These results may suggest that different variables or mechanisms are at play within each community.

	Sex	Age	Kinship	Wealth	Friendship	Generosity	Community ^a
Sex	-	-0,048	0,028	-0,014	0,011	-0,087	0,009 (1,146)
Age	-0,070° -0,103 ¹ 0,190 -0,123	-	-0,066	-0,033	0,117*	-0,087	0,038 (5,042)**
Kinship	0,078 ^c 0,110 ^l -0,071 ^h -0,020 ^a	-0,157 ^c 0,108 ^l -0,148 ^h 0,001 ^a	-	0,120*	-0,009	0,080	0,055 (7,526)**
Wealth	-0,012 ^c 0,019 ^l 0,003 ^h -0,099 ^a	0,088 ^c 0,021 ^l 0,114 ^h -0,159 ^a	0,029 ^c 0,037 ¹ 0,390** ^h 0,046 ^a	-	-0,037	0,041	0,091 (13,008)**
Friendship	0,033 ^c 0,031 ^l 0,002 ^h 0,036 ^a	-0,093 ^c 0,278** ¹ -0,071 ^h 0,069 ^a	0,010 ^c 0,190* ^I 0,287* ^h -0,107 ^a	0,207* ^c 0,000 ¹ 0,058 ^h -0,191* ^a	-	-0,028	0,121 (17,824)**
Generosity	0,156 ^c -0,200* ^I -0,268* ^h 0,004 ^a	-0,133 ^c 0,081 ¹ -0,381** ^h -0,100 ^a	0,244* ^c -0,206* ^I 0,093 ^h 0,137 ^a	0,088 ^c -0,030 ^l -0,026 ^h 0,010 ^a	0,035 ^c 0,012 ^l 0,075 ^h -0,219*a	-	0,031 (4,072)**

Table 7: Correlations between variables used within analysis. Upper conner includes all cases used in the analysis, bottom conner shows effects split by community.

^a For the variable community the eta-squared (anova) and F-value are reported instead

^c Coastal community

¹Lowland community

^h Highland community

^a Altiplano community

*significant at p<0,05, **significant at p<0,01, N total = 392, N^c = 93, N^l = 135, N^h = 56, N^a = 108

Model fitness

At first my goal was to estimate a number of models with linear regression. With these I would be able to estimate a path model with all six variables. As can be seen in appendix 3, a number of assumptions did not hold up, so different statistical models where used for the analysis. The main issue was the normal distribution of the residuals. This assumption did not hold, mostly due to the skewed variation of generosity. Therefore I choose to do a binary linear regression instead. The observations where not independent from each other as well. A better fit for the data would be a network analysis, but this goes beyond the scope of the bachelor thesis.

Some data point had a high leverage, cook's distance or standardized residual value. This may indicate that some point had a higher influence within the dataset. When I run the analysis again without the most influential points, no clear difference was found in the results. These values where therefore not excluded from the dataset. One outlier was found for the age variable and was excluded from the dataset. Someone had a reported age of 6 years, which is likely a reporting error.

No indications of multicollinearity where found, the highest Variance Inflations Factor (VIF) found was 1,157. Ethnicity was excluded in a early stage due to possible multicollinearity with the variable community. Ethnic composition of the communities is one of the main characteristics of each community, therefore the concepts measure in theory partially the same thing.

$ \left[1 \right] \ \ \ \ \ \ \ \ \ \ \ \ \ $	lts of log	ıistical reg	ıression anal _,	ysis with Ge	enerosit)	ı as depei	ıdent varia	ble, wea	lth as ind	ependent, I	kinship a:	s spuriou	s, and frier	ıdship as	mediati
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $				Model 2			Model 3			Model 5			Model 7		
ratio ratio value value ratio value ratio value value </td <td></td> <td>Odds-</td> <td>p-value</td> <td>b (SE)</td> <td>-sppO</td> <td>-d</td> <td><i>b</i> (SE)</td> <td>-sppO</td> <td>-d</td> <td>b (SE)</td> <td>-sppO</td> <td>þ</td> <td><i>b</i> (SE)</td> <td>-spbO</td> <td>-d</td>		Odds-	p-value	b (SE)	-sppO	-d	<i>b</i> (SE)	-sppO	-d	b (SE)	-sppO	þ	<i>b</i> (SE)	-spbO	-d
		ratio			ratio	value		ratio	value		ratio	value		ratio	value
$ \left(\begin{array}{cccccccccccccccccccccccccccccccccccc$		15,563	<0,001**	2,125	8,373	0,023*	2,085	8,045	0,026*	2,154	8,619	0,022*	2,111	8,257	0,025*
0 0,572 0,072 -0,558 0,986 0,073 -0,578 0,573 0,573 0,573 0,573 0,573 0,573 0,573 0,573 0,573 0,573 0,573 0,573 0,573 0,573 0,573 0,013 0,098 0,013 0,0313 0,033 0,013 0,033 0,013 0,013 0,098 0,013 0,013 0,098 0,013 0,013 0,098 0,013 0,013 0,098 0,013 0,098 0,013 0,013 0,098 0,098 0,013 0,013 0,098 0,098 0,098 0,013				(0,934)			(0,938)			(0,940)			(0,942)		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	ი	0,572	0,072	-0,558	0,986	0,073	-0,579	0,560	0,064	-0,557	0,573	0,073	-0,578	0,561	0,064
4 0,986 0,071 -0,014 0,986 0,013 -0,013 0,987 0,098 -0,013 0,987 0,987 0,093 -0,013 0,987 0,093 0,013 0,987 0,096 0,098 0,093 0,093 0,013 0,123 1,131 0,577 0,166 1,180 0,453 0,123 1,131 0,581 0,033 0,123 1,131 0,581 0,033 0,123 1,131 0,581 0,123 1,131 0,581 0,133 1,131 0,581 0,133 0,124 0,123 0,133 1,131 0,581 0,234 0,133 0,124 0,244 0,581 0,234 0,134 0,581 0,293 0,134 0,581 0,293 0,134 0,234 <th< td=""><td>,</td><td></td><td></td><td>(0,311)</td><td></td><td></td><td>(0,313)</td><td></td><td></td><td>(0,331)</td><td></td><td></td><td>(0,313)</td><td></td><td></td></th<>	,			(0,311)			(0,313)			(0,331)			(0,313)		
8) (0,008) (0,008) (0,008) (0,008) (0,008) (0,008) (0,008) (0,008) (0,224) (0,224) (0,224) (0,224) (0,224) (0,224) (0,224) (0,224) (0,224) (0,224) (0,026) (0,026) (0,026) (0,026) (0,026) (0,066) (0,	4	0,986	0,071	-0,014	0,986	0,075	-0,014	0,986	0,087	-0,014	0,986	0,083	-0,013	0,987	0,096
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	8)			(0,008)			(0,008)			(0,008)			(0,008)		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				0,166	1,180	0,453	0,125	1,133	0,577	0,164	1,178	0,459	0,123	1,131	0,581
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				(0,221)			(0,223)			(0,221)			(0,224)		
							0,099	1,104	0,135				0,099	0,973	0,755
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$							(0,066)						(0,066)		
18 (0,087) (0,087) 18 321,775 319,253 321,685 319,156 3* 0,543 2,522 0,089 2,529 392 392 392 392 392										-0,026	0,974	0,974	-0,027	1,104	0,134
118 321,775 319,253 321,685 319,156 3* 0,543 2,522 0,089 2,529 392 392 392										(0,087)			(0,087)		
s* 0,543 2,522 0,089 2,529 392 392 392 392 392	318			321,775			319,253			321,685			319,156		
392 392 392 392	*∞			0,543			2,522			0,089			2,529		
				392			392			392			392		

Hypotheses and models

	Model 4 ^a		Model 6 ^b	
	<i>b</i> (SE)	p-value	<i>b</i> (SE)	p-value
Constant	3,696 (0,098)	<0,001**	1,129 (0,546)	0,039*
Sex	-0,023 (0,065)	0,719	0,054 (0,167)	0,748
Age	-0,001 (0,002)	0,606	0,011 (0,005)	0,021*
Kinship	0,028 (0,012)	0,019*		
Wealth			-0,085 (0,130)	0,514
R2 adjusted	0,008		0,007	
F Change	2,012		1,979	
Ν	392		392	

Table 9: Results of linear regression, with either wealth or friendship as dependent variable and kinship or wealth as independent variable

*significant by p <0,05; **significant by p <0,01 ^a Dependent is wealth; ^b Dependent is friendship

Table 10: Re	ssults of log	jistical re	gression wit	h generosit	y as dep	endent vi	ariable anc	l all othe	r variable.	s as depen	dents. Re	sults
split by con	munity.			I	•							
	Model 8c			Model 81			Model 8h	_		Model 8a		
	b (SE)	-sppO	p-value	b (SE)	Odds-	- <i>d</i>	b (SE)	Odds-	-d	b (SE)	-sppO	-d
		ratio			ratio	value		ratio	value		ratio	value
Constant	2,013 (1,890)	7,486	0,287	1,974 (1,325)	7,201	0,136	2,968 (7,404)	19,450	0,689	4,106 (3,605)	60,729	0,255
Sex	0,878 (0,795)	2,405	0,270	-1,025 (0,508)	0,359	0,043*	ı	ı	ı	-0,003 (0,635)	0,997	0,996
Age	-0,039 (0,028)	0,962	0,163	0,011 (0,012)	1,011	0,374	-0,101 (0,053)	,904	0,055	-0,017 (0,018)	0,983	0,336
Wealth	0,217 (0,443)	1,243	0,624	-0,070 (0,315)	0,933	0,825	1,217 (2,410)	3,378	0,613	-0,376 (0,816)	0,686	0,645
Kinship	0,959 (0,534)	2,610	0,072	-0,268 (0,119)	0,765	0,025*	-0,136 (0,427)	0,873	0,750	0,149 (0,127)	1,160	0,242
Friendship	-0,027 (0,200)	0,973	0,891	0,066 (0,136)	1,068	0,627	0,189 (0,427)	1,208	0,658	-0,583 (0,314	0,558	0,064
Deviance	45,681			133,908			20,571			76,297		
X2	13,455*			11,576*			8,249			7,010		
Z	93			135			56			108		
*sianificant	bv p <0.05	: **sianif	icant bv p <	0.01								

signijicant by p جטיטא ייאטיויייטוע אין איטיטאין איטטאין איטטאין איטטאין איטטאין איטטאין איטטאין איטטאין איטטאי כמstal community; ^I Lowland community; ^h Highland community; ^a Altiplano community community section to the section of the sec Model 1 in table 8 show men are somewhat more generous overall then women (b = -0,572; p = 0,072). Younger individuals are also more generous then older individuals (b = -0,014; p = 0,071). Both effects are non-significant, but the Chi-square value for this model is significant ($X^2 = 6,298$; p < 0,05). This means sex and age are able to explain the variation of generosity to somewhat.

Model 1 and model 2 where used to test the first two hypotheses:

- H1a: Wealthier individuals are more likely to show generous behaviour.

- H1b: Wealthier individuals are less likely to show generous behaviour.

Model 2 shows a positive effect of wealth (b = 0,166; p = 0,453) on generosity, controlled for sex and age. The effect is small (OR = 1,180) and non-significant. Model 2 shows minimal decrease of the deviance (321,775) and the Chi-square test for this block shows no significant increase ($X^2 = 0,543$). I do not have enough evidence to reject the null-hypotheses and therefore cannot support hypothesis 1a or 1b.

Models 2 and 3 in table 8 and Model 4 in table 9 were used to test the second hypothesis:

- H2: Part of the effect of wealth on generosity can be explained by a spurious effect of kinship

As stated before, model 2 shows a small positive effect of wealth (b = 0,166; p = 0,453) on generosity. Model 4 shows that having more close family members in the community, has a positive effect on household wealth (b = 0,028; p < 0,05). Model 3 shows similar effects, with again a positive effect of more close family on wealth (b = 0,099; OR; 1,104; p = 0,135). The effect of wealth on generosity in model 4 is somewhat smaller (b = 0,125), but still not significant (p = 0,577). The proportional explained variance of model 4 is relatively low ($R^2 = 0,008$) and the difference with the empty model is small and non-significant as well ($F_{change} = 2,012$). Model 4 shows no fitness improvement either (*Deviance* = 319,253; $X^2 = 2,522$). More family members is related to higher levels of material wealth, and the effect size of wealth on generosity somewhat decreases when kinship is added within model 3, which might suggest there is some support for hypothesis 2. However, the low fitness of the models and the non-significant effect sizes of wealth and kinship in model 4 mean I cannot reject the null-hypothesis. Therefore I did not find support for hypothesis 2.

Models 2 and 5 in table 8 and model 6 in table 9 were used tot test the third hypothesis:

- H3: Part of the effect of wealth on generosity can be explained by a mediation effect of friendship

Model 6 show that higher levels of material wealth is related to lower number of friends (b = -0,085), but the result was non-significant (p = 0,514). Model 6 has a poor fitness as well ($R^2 = 0,007$; $F_{change} =$

1,979). Model 5 shows that more friends is related to lower levels of generosity (b = -0,026; P = 0,974). The effect size of wealth on generosity increases compared to model 2 (b = 0,162; p = 0,459). Model 5 has a poor fitness as well, the deviance decreases almost nothing (*321,685*) and the chi-square test is small as well ($X^2 = 0,089$). Friendship is negatively related to both wealth and generosity and the effect of wealth increasing when friendship is included within the model. These finding suggest a mediation effect of friendship, although it is in the opposite direction I hypothesized before. No strong evidence exist to reject the null-hypothesis again, due to the low increase in model fitness and non-significant effects. Therefore I did not find support for hypothesis 3.

Model 7 in table 8 and models 8c, 8l, 8h and 8a in table 10 where used to test the fourth hypothesis:

- H4: The effect of Wealth on Generosity differs between the four communities.

In the model for the highland community, I excluded the variable for sex due to small sample size and extremely high standard error when the variable was included. Figures x, x, and x show a graphical visualisation of the 95% confidence intervals around the effect for wealth, kinship and friendship on generosity. The confidence intervals for wealth overlap quite a bit and the coefficients lay close to zero. The effect of wealth on generosity in the highland community is somewhat higher (b = 1,217), but due to the high standard error (SE = 2,410), the differences is probably not significant.

The confidence intervals for kinship and friendship do show some variation. Kinship in the coastal community is related to higher levels of generosity (b = 0.959; p = 0.072), but in the lowland community this effect is flipped and more family is related to lower levels of generosity (b = -0.268; p < 0.05). Friendship has mostly no effect on generosity, except for the altiplano community where the relationship is negative (b = 0.583; p = 0.064).

Because there where no clear differences between the effect of wealth on generosity between the communities, the null-hypothesis cannot be rejected. I do not find support for hypothesis 4 as well.

Figure 7: Confidence for the wealth coefficient in model 7 and 8; From left to right: All cases, coastal, lowland, highland, and altiplano

Figure 8: Confidence for the kinship coefficient in model 7 and 8; From left to right: All cases, coastal, lowland, highland, and altiplano

Figure 9: Confidence for the Friendship coefficient in model 7 and 8; From left to right: All cases, coastal, lowland, highland, and altiplano

Discussion and conclusion

The analysis did not find any clear support for the hypotheses. The effects found are relatively small, which makes it difficult to say anything clear about them. I see three potential possibilities why this may be the case.

First off, when looking at the main effect, I hypothesized opposite effects due to mixed results in previous research. When no clear results are found, it is difficult to infer if this means no mechanism is at play or if maybe both are at play at the same time. If this is the case, no statistical difference is visible with no result at all.

Secondly, the measurements used for the different variables are more reliable for network data then for normal regression analysis. This is particularly a problem for the network variables kinship and friendship. In my analysis the number of friends and family was compared with the sum of shared money during the allocation game. However my model cannot see the difference between sharing having 1 friend and sharing 5 peso's or having 5 friends and sharing 1 peso with each of them. A better model would be a dyadic network analysis where friendship and kinship ties are compared with generous giving ties (Borgatti et al., 2018). In other words, comparing if who you share money with are the same individuals as your friends and family.

Thirdly, the absence of variation for wealth and generosity might explain why no clear relationship was found. Most individuals where extremely generous, with more then half of them giving away 90% of their money. However this does mean very little data was collected for less generous individuals, which makes predictions for less generous individuals less reliable. For wealth the same problem might play a role. Although there is some variation of wealth within the communities, if we compare wealth with urban area's within Colombia almost all respondents live in poverty. This means a lot of data was missing for actually rich individuals.

What was found is some variation between the four communities when it comes to the network variables. The differences are likely due to the variation in the networks themselves. For example, the negative relationship between friendship and wealth in the altiplano community may be explained by the fragmented friendship network within the community itself. Further research into the relationship between friendship and generosity has already been done with the same dataset by Redhead et. al. (2023). As far as I know, the relationship between kinship and generosity has not been researched yet with these datasets.

When looking back at the research question: "What is the relationship between wealth and generosity within the rural Colombian context?" I can say that there is no clear relationship between wealth and generosity based on my findings. More research with network analysis might gain some insights in the future.

Bibliography

Afman, E. (2020). Income, Wealth & Intergenerational Inequality in the Netherlands (Door European Commission; ISSN 2443-8030 (online)). European Union. https://doi.org/10.2765/132911

- Bird, R. B., Smith, E., & Bird, D. (2001). The hunting handicap: costly signaling in human foraging strategies. *Behavioral Ecology And Sociobiology*, 50(1), 9–19. https://doi.org/10.1007/s002650100338
- Blau, F. D., & Kahn, L. M. (2017). The Gender Wage Gap: Extent, Trends, and Explanations. *Journal Of Economic Literature*, 55(3), 789–865. https://doi.org/10.1257/jel.20160995

Borgatti, S. P., Everett, M. G., & Johnson, J. C. (2018). Analyzing social networks. SAGE.

Cardenas, J. (2003). Real wealth and experimental cooperation: experiments in the field lab. *Journal Of Development Economics*, 70(2), 263–289. https://doi.org/10.1016/s0304-3878(02)00098-6 Cook, K. S., & Gerbasi, A. (2011). Trust. In *The Oxford Handbook of Analytical Sociology*. OUP Oxford.

De Graaf, N. D., & Wiertz, D. (2019). Societal Problems as Public Bads. Routledge.

- Gintis, H., Smith, E. A., & Bowles, S. (2001). Costly Signaling and Cooperation. *Journal Of Theoretical Biology*, *213*(1), 103–119. https://doi.org/10.1006/jtbi.2001.2406
- Haidt, J. (2012). *The righteous mind: Why Good People are Divided by Politics and Religion*. Penguin UK.
- Henrich, J., Heine, S. J., & Norenzayan, A. (2010). Most people are not WEIRD. *Nature*, 466(7302), 29. https://doi.org/10.1038/466029a

Jaeggi, A. V., & Gurven, M. (2013). Reciprocity explains food sharing in humans and other primates independent of kin selection and tolerated scrounging: a phylogenetic metaanalysis. *Proceedings - Royal Society. Biological Sciences/Proceedings - Royal Society. Biological Sciences*, 280(1768), 20131615.

https://doi.org/10.1098/rspb.2013.1615

- Kadushin, C. (2012). Understanding social networks: Theories, Concepts, and Findings. OUP USA.
- Kapteyn, A., Alessie, R., & Lusardi, A. (2005). Explaining the wealth holdings of different cohorts: Productivity growth and Social Security. *European Economic Review*, 49(5), 1361–1391. https://doi.org/10.1016/j.euroecorev.2003.12.001
- Keltner, D., Gruenfeld, D. H., & Anderson, C. (2003). Power, approach, and inhibition. *Psychological Review*, *110*(2), 265–284. https://doi.org/10.1037/0033-295x.110.2.265
- Klapwijk, A., & Van Lange, P. A. M. (2009). Promoting cooperation and trust in "noisy" situations: The power of generosity. *Journal Of Personality And Social Psychology*, 96(1), 83–103. https://doi.org/10.1037/a0012823

- Moham, B. (2022). Karl Marx. In *Introduction to sociology : concepts and theories* (pp. 220–276). <u>https://doi.org/10.4324/9781003291053-8</u>
- NOS. (2024, 2 april). In 2024 meeste miljardairs ooit, Taylor Swift nieuwe Binnenkomer. NOS.nl. Geraadpleegd op 4 juni 2024, van https://nos.nl/artikel/2515238-in-2024meeste-miljardairs-ooit-taylor-swift-nieuwe-binnenkomer
- Nowak, M. A. (2006). Five Rules for the Evolution of Cooperation. *Science*, *314*(5805), 1560–1563. https://doi.org/10.1126/science.1133755
- Piff, P. K., Kraus, M. W., Côté, S., Cheng, B. H., & Keltner, D. (2010). Having less, giving more: The influence of social class on prosocial behavior. *Journal Of Personality And Social Psychology*, 99(5), 771–784. https://doi.org/10.1037/a0020092

Piketty, T. (2017). Capital in the Twenty-First Century. Harvard University Press.

- Pisor, A. C., Gervais, M. M., Purzycki, B. G., & Ross, C. (2020). Preferences and constraints: the value of economic games for studying human behaviour. *Royal Society Open Science*, 7(6), 192090. https://doi.org/10.1098/rsos.192090
- Redhead, D., Gervais, M., Kajokaite, K., Koster, J., Hurtado Manyoma, A., Hurtado Manyoma, D., McElreath, R., & Ross, C. T. (2024). Reputation, Exploitation, and the maintenance of cooperation: Evidence of direct and indirect reciprocity in networkstructured economic games. ?
- Redhead, D., Ragione, A. D., & Ross, C. T. (2023). Friendship and partner choice in rural Colombia. *Evolution And Human Behavior*, 44(5), 430–441. https://doi.org/10.1016/j.evolhumbehav.2022.08.004
- Reports, C. (2023, 25 september). *Poverty and inequality*. Colombia News | Colombia Reports. Geraadpleegd op 4 juni 2024, van https://colombiareports.com/colombia-poverty-inequality-statistics/

- Sell, J., & Kuipers, K. J. (2009). A Structural Social Psychological View of Gender Differences in Cooperation. *Sex Roles*, 61(5–6), 317–324. https://doi.org/10.1007/s11199-009-9597-5
- Siegler, R. S., DeLoache, J. S., & Eisenberg, N. (2014). *How Children Develop (Canadian version)*. Macmillan Higher Education.
- Smith, C., & Davidson, H. (2014). *The Paradox of Generosity*. https://doi.org/10.1093/acprof:oso/9780199394906.001.0001
- Van Vugt, M., & Van Lange, P. A. M. (2006). The Altruism Puzzle: Psychological adaptations for Prosocial Behavior. In *Evolution and Social Psychology* (pp. 237– 261).
- Waal, F. B. M. (2020). De aap in ons: waarom we zijn wie we zijn.

Appendix 1

In this appendix I have reported the descriptives and frequencies of the variables included within the analysis. First I will show what the variables looked like before any changes where computed, secondly I will show which changes were made, and lastly I will show the descriptives and frequencies of these new computed variables. Most calculations and transformations where made with SPSS and some with Ucinet. If calculations or transformations where made with ucinet, this will be reported. If no specifics are given, calculations and transformations where done in SPSS.

Variable 1: Sex

Syntax

```
FREQUENCIES VARIABLES=Sex
    /ORDER=ANALYSIS.
RECODE Sex ('M'=0) ('F'=1) INTO Sex_bi.
EXECUTE.
FREQUENCIES VARIABLES=Sex_bi
    /ORDER=ANALYSIS.
```

Reported sex of respondents. Male is coded "M" and Female is coded "F".

	Sex									
					Cumulative					
		Frequency	Percent	Valid Percent	Percent					
Valid	F	272	58,2	58,2	58,2					
	М	195	41,8	41,8	100,0					
	Total	467	100,0	100,0						

Sex was recoded to a binary variable with M = 0 and F = 1.

			Sex_bi		
					Cumulative
		Frequency	Percent	Valid Percent	Percent
Valid	,00	195	41,8	41,8	41,8
	1,00	272	58,2	58,2	100,0
	Total	467	100,0	100,0	

Variable 2: Age

Syntax

```
DESCRIPTIVES VARIABLES=Age
/STATISTICS=MEAN STDDEV MIN MAX.
GRAPH
/HISTOGRAM=Age.
```

Reported age of respondents in years. No further transformations where made.

Descriptive Statistics

					Std.
	Ν	Minimum	Maximum	Mean	Deviation
Age	467	6,416666667	89,00000000	41,27819414	17,36202185
		000000	0000000	6917170	9525033
Valid N	467				
(listwise)					

Variable 3: Kinship

```
Ucinet
```

```
Transform -> Dichotomize... -> input dataset (coastal kinship):
       Dichotomization rule \rightarrow If x(i,j) Greater than or equal to value 0,25 then
       y(i,j) = 1 else y(i,j) = 0
Network -> Centrality -> Degree -> input Network (coastal kinship GE 0,25):
       Output -> Raw totals
Transform -> Dichotomize... -> input dataset (lowland kinship):
       Dichotomization rule \rightarrow If x(i,j) Greater than or equal to value 0,25 then
       y(i,j) = 1 else y(i,j) = 0
Network -> Centrality -> Degree -> input Network (lowland kinship GE 0,25):
       Output -> Raw totals
Transform -> Dichotomize... -> input dataset (highland kinship):
       Dichotomization rule \rightarrow If x(i,j) Greater than or equal to value 0,25 then
       y(i,j) = 1 else y(i,j) = 0
Network -> Centrality -> Degree -> input Network (highland kinship GE 0,25):
       Output -> Raw totals
Transform -> Dichotomize ... -> input dataset (altiplano kinship):
       Dichotomization rule \rightarrow If x(i,j) Greater than or equal to value 0,25 then
       y(i,j) = 1 else y(i,j) = 0
Network -> Centrality -> Degree -> input Network (altiplano kinship GE 0,25):
       Output -> Raw totals
Network -> Whole network & cohesion -> Multiple whole network measures -> Input
dataset (coastal kinship GE 0,25)
Network -> Whole network & cohesion -> Multiple whole network measures -> Input
dataset (lowland kinship GE 0,25)
Network -> Whole network & cohesion -> Multiple whole network measures -> Input
dataset (highland kinship GE 0,25)
Network -> Whole network & cohesion -> Multiple whole network measures -> Input
dataset (altiplano kinship GE 0,25)
```

For each community a kinship network was constructed with the tie value indicating the rate of relatedness between two individuals. These networks where dichotomized with the cutoff point of 0,25. Then the number of ties was calculated per individual with the degree centrality option, which gives the number of close relatives within the community a respondent has. These values where added to the SPSS dataset.

Whole network measures Whole network measures 1 1 lowland coastal kinship_ kinship GE_0,25 GE_0,25 _ _ _ _ _ _ _ _ _ _ _ _ _ 1 # of nodes 149 1 # of nodes 117 2 # of ties 200 2 # of ties 260 3 Avg Degree 1.342 3 2.222 Avg Degree Indeg H-Index 4 5 4 9 Indeg H-Index 5 K-core index 4 7 5 K-core index 6 Deg Centralization 0.039 6 Deg Centralization 0.068 7 Out-Centralization 0.038 7 Out-Centralization 0.068 In-Centralization 0.038 8 In-Centralization 0.068 8 9 Indeg Corr -0.037 9 Indeg Corr -0.099 10 Outdeg Corr -0.037 10 Outdeg Corr -0.099 11 Density 0.009 11 Density 0.019 12 89 Components 12 Components 68 13 0.595 Component Ratio 13 Component Ratio 0.578 14 Connectedness 0.018 14 Connectedness 0.029 15 Fragmentation 0.982 15 0.971 Fragmentation 16 Closure 0.667 16 Closure 0.855 17 Avg Distance 1.696 17 Avg Distance 1.406 18 Prop within 3 0.017 18 Prop within 3 0.029 19 # w/in 3 380 19 # w/in 3 388 20 SD Distance 0.822 20 0.635 SD Distance 21 Diameter 4 21 Diameter 4 22 Wiener Index 658 22 Wiener Index 554 23 Dependency Sum 270 23 Dependency Sum 160 24 Breadth 0.987 24 0.976 Breadth 25 0.013 Compactness 25 Compactness 0.024 26 Small Worldness 26 Small Worldness 27 Mutuals 0.009 Mutuals 27 0.019 28 Asymmetrics 0 28 Asymmetrics 0 29 0.991 Nulls 29 0.981 Nulls 30 Arc Reciprocity 1 30 Arc Reciprocity 1 31 Dyad Reciprocity 1 31 Dyad Reciprocity 1

31 rows, 1 columns, 1 levels.

31 rows, 1 columns, 1 levels.

Whole network measures Whole network measures 1 1 highland altiplan kinship o kinshi _GE_0,2 p_GE_0,2 5 5 _ _ _ _ _ 1 # of nodes 65 # of nodes 1 136 2 # of ties 154 2 # of ties 372 3 Avg Degree 2.369 3 Avg Degree 2.735 4 Indeg H-Index 5 4 Indeg H-Index 9 5 5 K-core index 5 9 K-core index 6 Deg Centralization 0.059 0.077 6 Deg Centralization 7 Out-Centralization 0.058 7 Out-Centralization 0.077 8 In-Centralization 0.058 8 In-Centralization 0.077 9 Indeg Corr -0.217 9 Indeg Corr -0.068 10 Outdeg Corr -0.217 10 Outdeg Corr -0.068 11 0.037 Density Density 11 0.020 12 Components 29 12 Components 63 13 Component Ratio 0.438 13 Component Ratio 0.459 14 Connectedness 0.041 14 Connectedness 0.027 15 Fragmentation 0.959 15 Fragmentation 0.973 16 Closure 0.921 16 Closure 0.840 17 Avg Distance 1.106 17 Avg Distance 1.316 18 Prop within 3 0.041 18 Prop within 3 0.027 19 # w/in 3 170 19 # w/in 3 488 20 SD Distance 0.344 20 SD Distance 0.615 21 Diameter 3 21 Diameter 4 22 Wiener Index 188 22 Wiener Index 650 23 Dependency Sum 18 23 Dependency Sum 156 24 Breadth 0.961 24 Breadth 0.977 25 Compactness 0.039 25 Compactness 0.023 26 Small Worldness 26 Small Worldness 27 Mutuals 0.037 27 Mutuals 0.020 28 Asymmetrics 0 28 Asymmetrics 0 29 Nulls 0.963 29 Nulls 0.980 30 Arc Reciprocity 1 30 Arc Reciprocity 1 31 Dyad Reciprocity 1 31 Dyad Reciprocity 1 31 rows, 1 columns, 1 levels. 31 rows, 1 columns, 1 levels.

```
SPSS syntax
```

```
DESCRIPTIVES VARIABLES=Kinship_n_close
/statistics=mean stddev min max.
GRAPH
/HISTOGRAM=Kinship_n_close.
```

Value indicates reported close family members within the community. No further transformations where made within SPSS.

Variable 4: Wealth

Syntax

```
DESCRIPTIVES VARIABLES=hh_wealth
  /STATISTICS=MEAN STDDEV MIN MAX.
GRAPH
 /HISTOGRAM=hh_wealth.
EXAMINE VARIABLES=hh_wealth BY community
  /PLOT=BOXPLOT
  /STATISTICS=NONE
  /NOTOTAL.
COMPUTE log wealth=LG10(hh wealth).
EXECUTE.
DESCRIPTIVES VARIABLES=log_wealth
 /STATISTICS=MEAN STDDEV MIN MAX.
GRAPH
  /HISTOGRAM=log_wealth.
EXAMINE VARIABLES=log_wealth BY community
  /PLOT=BOXPLOT
  /STATISTICS=NONE
  /NOTOTAL.
```

Estimated value of material wealth within the household of respondent. Natural log of wealth was calculated due to extreme skewed distribution of wealth which caused problems for the assumption of a linear relationship (see: appendix 3).

		_ • • • • · · · P •			
	Ν	Minimum	Maximum	Mean	Std. Deviation
hh_wealth	467	20,000000000000	102720,00000000	9223,3720368547	9223,3720368547
		0	00000	77000	77000
Valid N (listwise)	467				

Descriptive Statistics

		altiplan	CO	astal	highland	lowland	
	,00000000000,		-	1			
	20000,00000000000000			• 		376382 378*398 0389	
È	40000,0000000000000	7 95 94 63 0	16	141		397* *417	
L_wealth	60000,00000000000						
	80000,0000000000000					341 *	
	100000,000000000000			217 *			
	120000,00000000000000						

467

Valid N (listwise)

,62284

Variable 5: Friendship

Ucinet

```
Network -> Centrality -> Degree -> input Network (coastal friendship):
      Output -> Raw totals
Network -> Centrality -> Degree -> input Network (lowland friendship):
      Output -> Raw totals
Network -> Centrality -> Degree -> input Network (highland friendship):
      Output -> Raw totals
Network -> Centrality -> Degree -> input Network (altiplano friendship):
      Output -> Raw totals
Network -> Whole network & cohesion -> Multiple whole network measures -> Input
dataset (coastal friendship)
Network -> Whole network & cohesion -> Multiple whole network measures -> Input
dataset (lowland friendship)
Network -> Whole network & cohesion -> Multiple whole network measures -> Input
dataset (highland friendship)
Network -> Whole network & cohesion -> Multiple whole network measures -> Input
dataset (altiplano_friendship)
```

For each community a friendship network was constructed with self-reported friendship of individuals. I calculated the number of reported number friends per respondents by using the degree centrality option. The outdegree values (ties reported by ego themselves) where added to the SPSS dataset.

Whole network measures			Whole r	network measures	
		1 coastal_ friends			1 lowland_f riends
4	# - C i		4	# - C 1	
1	# of nodes	117	1	# of nodes	149
2	# of ties	1//	2	# of ties	262
5	AVg Degree	1.513	5	AVg Degree	1./58
4	Indeg H-Index	0	4	Indeg H-Index	5
5	K-core index	5	5	K-core index	4
5	Deg Centralization	0.074	5	Deg Centralization	0.068
/	Out-Centralization	0.065	/	Out-Centralization	0.036
ŏ	In-Centralization	0.065	8	In-Centralization	0.042
10	Indeg Corr	0.047	9	Indeg Corr	0.021
10	Outdeg Corr	0.045	10	Outdeg Corr	0.013
11	Density	0.013	11	Density	0.012
12	Components	84	12	Components	88
13	Component Ratio	0.716	13	Component Ratio	0.588
14	Connectedness	0.116	14	Connectedness	0.335
15	Fragmentation	0.884	15	Fragmentation	0.665
16	Closure	0.214	16	Closure	0.134
1/	Avg Distance	3.756	1/	Avg Distance	5.2/9
18	Prop Within 3	0.056	18	Prop Within 3	0.073
19	# W/1N 3	760	19	# W/1N 3	1606
20	SU Distance	1.850	20	SU Distance	2.185
21	Diameter	10	21	Diameter	13
22	Wiener Index	5919	22	Wiener Index	39011
23	Dependency Sum	4343	23	Dependency Sum	31621
24	Breadth	0.957	24	Breadth	0.918
25	Compactness	0.043	25	Compactness	0.082
26	Small Worldness		26	Small Worldness	
27	Mutuals	0.004	27	Mutuals	0.003
28	Asymmetrics	0.019	28	Asymmetrics	0.018
29	Nulls	0.978	29	Nulls	0.979
30	Arc Reciprocity	0.282	30	Arc Reciprocity	0.252
31	Dyad Reciprocity	0.164	31	Dyad Reciprocity	0.144
31 rows	s, 1 columns, 1 leve	els.	31 rows	s, 1 columns, 1 leve	els.

			Whole n	network measures	
Whole r	network measures				
					1
		1			altipla
		highland			no_frie
		_friends			nds
1	<pre># of nodes</pre>	65	1	# of nodes	136
2	# of ties	86	2	# of ties	68
3	Avg Degree	1.323	3	Avg Degree	0.500
4	Indeg H-Index	5	4	Indeg H-Index	3
5	K-core index	3	5	K-core index	4
6	Deg Centralization	0.109	6	Deg Centralization	0.031
7	Out-Centralization	0.058	7	Out-Centralization	0.034
8	In-Centralization	0.106	8	In-Centralization	0.026
9	Indeg Corr	0.091	9	Indeg Corr	0.022
10	Outdeg Corr	0.025	10	Outdeg Corr	0.041
11	Density	0.021	11	Density	0.004
12	Components	50	12	Components	129
13	Component Ratio	0.766	13	Component Ratio	0.948
14	Connectedness	0.122	14	Connectedness	0.005
15	Fragmentation	0.878	15	Fragmentation	0.995
16	Closure	0.221	16	Closure	0.597
17	Avg Distance	3.338	17	Avg Distance	1.330
18	Prop within 3	0.072	18	Prop within 3	0.005
19	# w/in 3	299	19	# w/in 3	94
20	SD Distance	1.860	20	SD Distance	0.572
21	Diameter	9	21	Diameter	3
22	Wiener Index	1689	22	Wiener Index	125
23	Dependency Sum	1183	23	Dependency Sum	31
24	Breadth	0.948	24	Breadth	0.996
25	Compactness	0.052	25	Compactness	0.004
26	Small Worldness		26	Small Worldness	
27	Mutuals	0.006	27	Mutuals	0.001
28	Asymmetrics	0.029	28	Asymmetrics	0.005
29	Nulls	0.965	29	Nulls	0.994
30	Arc Reciprocity	0.302	30	Arc Reciprocity	0.265
31	Dyad Reciprocity	0.178	31	Dyad Reciprocity	0.153

31 rows, 1 columns, 1 levels. 31 rows, 1 columns, 1 levels.

SPSS syntax

```
DESCRIPTIVES VARIABLES=Friends_outdegree
/STATISTICS=MEAN STDDEV MIN MAX.
GRAPH
/HISTOGRAM=Friends_outdegree.
```

Value indicates self-reported friends within the community. No further transformations where made within SPSS.

Descriptive Statistics						
	Ν	Minimum	Maximum	Mean	Std. Deviation	
Friends_outdegree	467	0	9	1,27	1,606	
Valid N (listwise)	467					

Variable 6: Generosity

Syntax

```
DESCRIPTIVES VARIABLES=GiveOther
  /STATISTICS=MEAN STDDEV MIN MAX.
GRAPH
  /HISTOGRAM=GiveOther.
EXAMINE VARIABLES=GiveOther BY community
  /PLOT=BOXPLOT
  /STATISTICS=NONE
  /NOTOTAL.
IF (coastal = 1) Gen_c=GiveOther / 15.
EXECUTE.
IF (lowland = 1) Gen l=GiveOther / 20.
EXECUTE.
IF (highland = 1) Gen h=GiveOther / 10.
EXECUTE.
IF (altiplano = 1) Gen a=GiveOther / 10.
EXECUTE.
COMPUTE Generosity=SUM(Gen c,Gen l,Gen h,Gen a).
EXECUTE.
DESCRIPTIVES VARIABLES=Generosity
  /STATISTICS=MEAN STDDEV MIN MAX.
DESCRIPTIVES VARIABLES=Generosity
 /STATISTICS=MEAN STDDEV MIN MAX.
EXAMINE VARIABLES=Generosity BY community
 /PLOT=BOXPLOT
  /STATISTICS=NONE
  /NOTOTAL.
RECODE Generosity (SYSMIS=SYSMIS) (Lowest thru 0.5=0) (ELSE=1) INTO
Generosity 01.
EXECUTE.
FREQUENCIES VARIABLES=Generosity 01
  /ORDER=ANALYSIS.
```

GiveOther is the number of peso's respondents gave away during the RICH allocation game (with 1000 steps increments). Because the maximum people were able to give was different per community, the dependent had to be recoded to a rate with 0 meaning nothing was given and 1 meaning everything was given. The residuals of this new dependent were not distributed normally and I decided to preform a binary logistic regression. The variable generosity was dichotomized with all values lower or equal to 0,5 coded as 0 and all above values coded as 1.

Descriptive Statistics							
	Ν	Minimum	Maximum	Mean	Std. Deviation		
GiveOther	393	0	20	11,39	4,767		
Valid N (listwise)	393						

community

Descriptive Statistics

	Ν	Minimum	Maximum	Mean	Std. Deviation
Generosity	393	,00	1,00	,7879	,24442
Valid N (listwise)	393				

Generosity_01								
					Cumulative			
		Frequency	Percent	Valid Percent	Percent			
Valid	,00	58	12,4	14,8	14,8			
	1,00	335	71,7	85,2	100,0			
	Total	393	84,2	100,0				
Missing	System	74	15,8					
Total		467	100,0					

Variable 7: Community

Syntax

```
FREQUENCIES VARIABLES=community
/ORDER=ANALYSIS.
SORT CASES BY community.
SPLIT FILE LAYERED BY community.
FREQUENCIES VARIABLES=Ethnicity
/ORDER=ANALYSIS.
SPLIT FILE OFF.
RECODE community ('coastal'=1) ('lowland'=2) ('highland'=3) ('altiplano'=4) INTO
community_ANOVA.
EXECUTE.
```

Community is a simple nominal variable indicating which community a respondent belongs to. The descriptives for ethnicity are also added for the method paragraph. An extra variable was constructed so community could be used within an ANOVA analysis.

		С	ommunity	/	
					Cumulative
		Frequency	Percent	Valid Percent	Percent
Valid	altiplano	136	29,1	29,1	29,1
	coastal	117	25,1	25,1	54,2
	highland	65	13,9	13,9	68,1
	lowland	149	31,9	31,9	100,0
	Total	467	100,0	100,0	

			Luniony			
						Cumulative
community			Frequency	Percent	Valid Percent	Percent
altiplano	Valid	MESTIZO	136	100,0	100,0	100,0
coastal	Valid	AFROCOLOMBIAN	80	68,4	68,4	68,4
		AFROEMBERA	1	,9	,9	69,2
		EMBERA	28	23,9	23,9	93,2
		MESTIZO	8	6,8	6,8	100,0
		Total	117	100,0	100,0	
highland	Valid	AFROCOLOMBIAN	3	4,6	4,6	4,6
		EMBERA	1	1,5	1,5	6,2
		MESTIZO	61	93,8	93,8	100,0
		Total	65	100,0	100,0	
lowland	Valid	AFROCOLOMBIAN	116	77,9	77,9	77,9
		EMBERA	21	14,1	14,1	91,9
		MESTIZO	12	8,1	8,1	100,0
		Total	149	100.0	100.0	

Ethnicity

Without missing data

Syntax

```
USE ALL.
COMPUTE filter \$=(obs = 1).
VARIABLE LABELS filter_$ 'obs = 1 (FILTER)'.
VALUE LABELS filter \$ \overline{0} 'Not Selected' 1 'Selected'.
FORMATS filter (f1.0).
FILTER BY filter $.
EXECUTE.
DESCRIPTIVES VARIABLES=Age Kinship_n_close log_wealth Friends_outdegree
Generosity
  /STATISTICS=MEAN STDDEV MIN MAX.
FREQUENCIES VARIABLES=Sex bi Generosity 01 community
 /ORDER=ANALYSIS.
FREQUENCIES VARIABLES=Age Kinship n close log wealth Friends outdegree Generosity
  /NTILES=4
  /STATISTICS=STDDEV MAXIMUM MEAN MEDIAN
  /ORDER=ANALYSIS.
SORT CASES BY community.
SPLIT FILE LAYERED BY community.
DESCRIPTIVES VARIABLES=Age Kinship n close log wealth Friends outdegree
Generosity
 /STATISTICS=MEAN STDDEV MIN MAX.
FREQUENCIES VARIABLES=Sex bi Generosity 01
 /ORDER=ANALYSIS.
SPLIT FILE OFF.
FREQUENCIES VARIABLES=Age Kinship n close log wealth Friends outdegree Generosity
  /NTILES=4
  /STATISTICS=STDDEV MAXIMUM MEAN MEDIAN
  /ORDER=ANALYSIS.
SPLIT FILE OFF.
```

Descriptives and frequencies of variables without missing data and split by community.

	Descriptive Statistics							
	Ν	Minimum	Maximum	Mean	Std. Deviation			
Age	392	14,33333333300	89,0000000000	42,5980017005	17,5798693243			
		00000	00000	27206	09428			
Kinship_n_close	392	,00,	13,00	2,1633	2,64021			
log_wealth	392	1,30	5,01	3,7034	,62928			
Friends_outdegree	392	0	9	1,31	1,624			
Generosity	392	,00,	1,00	,7873	,24450			
Valid N (listwise)	392							

.....

			Sex_bi		
					Cumulative
		Frequency	Percent	Valid Percent	Percent
Valid	,00	155	39,5	39,5	39,5
	1,00	237	60,5	60,5	100,0
	Total	392	100,0	100,0	

Generosity_01

					Cumulative
		Frequency	Percent	Valid Percent	Percent
Valid	,00	58	14,8	14,8	14,8
	1,00	334	85,2	85,2	100,0
	Total	392	100,0	100,0	

community

					Cumulative
		Frequency	Percent	Valid Percent	Percent
Valid	altiplano	108	27,6	27,6	27,6
	coastal	93	23,7	23,7	51,3
	highland	56	14,3	14,3	65,6
	lowland	135	34,4	34,4	100,0
	Total	392	100,0	100,0	

			-			Std.
communit	ty	Ν	Minimum	Maximum	Mean	Deviation
altiplano	Age	108	16,25000000	81,91666666	40,51080246	16,97216542
			0000000	6666700	9043210	9006090
	Kinship_n_close	108	,00	13,00	2,9074	3,37815
	log_wealth	108	2,48	4,54	3,9415	,38829
	Friends_outdegre	108	0	5	,41	,798
	е					
	Generosity	108	,00	1,00	,8019	,26545
	Valid N (listwise)	108				
coastal	Age	93	19,00000000	87,83333333	41,07347670	15,71781298
			0000000	3333300	2508970	8717740
	Kinship_n_close	93	,00	10,00	2,3011	2,80831
	log_wealth	93	1,30	5,01	3,6135	,74418
	Friends_outdegre	93	0	9	1,65	1,863
	е					
	Generosity	93	,00	1,00	,7842	,23782
	Valid N (listwise)	93				
highland	Age	56	14,333333333	88,83333333	38,22321428	17,94341630
			0000000	0000000	4821420	4225163
	Kinship_n_close	56	,00	6,00	2,4107	1,97969
	log_wealth	56	2,85	4,45	3,8807	,41907
	Friends_outdegre	56	0	5	1,41	1,523
	е					
	Generosity	56	,00	1,00	,8518	,18780
	Valid N (listwise)	56				
lowland	Age	135	18,66666666	89,0000000	47,13271604	18,33482664
			6666700	0000000	9382700	7391970
	Kinship_n_close	135	,00	7,00	1,3704	1,75661
	log_wealth	135	1,48	4,86	3,5013	,69079
	Friends_outdegre	135	0	7	1,75	1,709
	е					
	Generosity	135	,00	1,00	,7511	,24824
	Valid N (listwise)	135				

Descriptive Statistics

	Sex_bi									
Cumulative										
community			Frequency	Percent	Valid Percent	Percent				
altiplano	Valid	,00	38	35,2	35,2	35,2				
		1,00	70	64,8	64,8	100,0				
		Total	108	100,0	100,0					
coastal	Valid	,00	40	43,0	43,0	43,0				
		1,00	53	57,0	57,0	100,0				
		Total	93	100,0	100,0					
highland	Valid	,00	27	48,2	48,2	48,2				
		1,00	29	51,8	51,8	100,0				
		Total	56	100,0	100,0					
lowland	Valid	,00	50	37,0	37,0	37,0				
		1,00	85	63,0	63,0	100,0				
		Total	135	100,0	100,0					

	Generosity_01								
						Cumulative			
community			Frequency	Percent	Valid Percent	Percent			
altiplano	Valid	,00	14	13,0	13,0	13,0			
		1,00	94	87,0	87,0	100,0			
		Total	108	100,0	100,0				
coastal	Valid	,00	9	9,7	9,7	9,7			
		1,00	84	90,3	90,3	100,0			
		Total	93	100,0	100,0				
highland	Valid	,00,	4	7,1	7,1	7,1			
		1,00	52	92,9	92,9	100,0			
		Total	56	100,0	100,0				
lowland	Valid	,00	31	23,0	23,0	23,0			
		1,00	104	77,0	77,0	100,0			
		Total	135	100,0	100,0				

~ •••

Statistics

				Kinship_n_clos		Friends_outde	
communit	у		Age	е	log_wealth	gree	Generosity
altiplano	Ν	Valid	108	108	108	108	108
		Missing	0	0	0	0	0
М	Mean		40,510802469	2,9074	3,9415	,41	,8019
			043210				
Median		40,583333335	2,0000	4,0507	,00,	,9000	
			000000				
	Std. Deviatio	n	16,972165429	3,37815	,38829	,798	,26545
			006086				
	Maximum		81,916666666	13,00	4,54	5	1,00
			666700				
	Percentiles	25	24,875000000	,0000,	3,7419	,00,	,7250
			000000				
		50	40,583333335	2,0000	4,0507	,00,	,9000
			000000				
		75	50,166666665	4,0000	4,2164	1,00	1,0000
			000000				
coastal N	N	Valid	93	93	93	93	93
		Missing	0	0	0	0	0
	Mean		41,073476702	2,3011	3,6135	1,65	,7842
			508955				
	Median		39,500000000	1,0000	3,8156	1,00	,8667
			000000				·
	Std. Deviatio	n	15,717812988	2,80831	,74418	1,863	,23782
			717737				
	Maximum		87,833333333	10,00	5,01	9	1,00
			333300				
	Percentiles	25	29,875000000	,0000,	3,3555	,00,	,6667
			000000				
		50	39,500000000	1,0000	3,8156	1,00	,8667
			000000				
		75	50,083333333	4,0000	4,0881	3,00	1,0000
			333310				
highland	N	Valid	56	56	56	56	56
-		Missing	0	0	0	0	0
	Mean		38,223214284	2,4107	3,8807	1,41	.8518
			821430		,		,
	Median		34,208333330	2,0000	3.7397	1.00	.9000
			000000	,	,	,	,
	Std. Deviatio	n	17,943416304	1,97969	,41907	1,523	,18780
			225160				

	Maximum		88,833333330	6,00	4,45	5	1,00
	Percentiles	25	000000 23,250000000 000000	1,0000	3,6090	,00	,8000
		50	34,2083333330 000000	2,0000	3,7397	1,00	,9000
		75	51,833333335 000000	4,0000	4,3687	3,00	1,0000
lowland	Ν	Valid	135	135	135	135	135
		Missing	0	0	0	0	0
	Mean		47,132716049 382715	1,3704	3,5013	1,75	,7511
	Median		43,9166666666 666690	1,0000	3,6160	1,00	,8500
	Std. Deviatio	n	18,334826647 391967	1,75661	,69079	1,709	,24824
	Maximum		89,000000000 000000	7,00	4,86	7	1,00
	Percentiles	25	30,083333333 333300	,0000	3,3522	,00	,6500
		50	43,916666666 666690	1,0000	3,6160	1,00	,8500
		75	63,500000000 000000	2,0000	3,9112	3,00	,9500

Appendix 2

In this appendix I will first show the bivariate statistics for all cases, then for all cases without missing data and finally split by community. Bivariate correlations for most variables were used and oneway ANOVA for communities.

The different models were then estimated with logistic and linear regression according to the statistical analysis plan in the method paragraph.

Bivariate statistics

Syntax

```
CORRELATIONS

/VARIABLES=Sex_bi Age Kinship_n_close log_wealth Friends_outdegree

Generosity_01

/PRINT=TWOTAIL NOSIG FULL

/MISSING=PAIRWISE.

ONEWAY Sex_bi Age Kinship_n_close log_wealth Friends_outdegree Generosity_01 BY

community_ANOVA

/ES=OVERALL

/STATISTICS DESCRIPTIVES

/PLOT MEANS

/MISSING ANALYSIS

/CRITERIA=CILEVEL(0.95).
```

Correlations and ANOVA for all cases (n = 467)	
_	-

			Correla	tions			
				Kinship_n_cl		Friends_outd	Generosity_0
		Sex_bi	Age	ose	log_wealth	egree	1
Sex_bi	Pearson	1	-,062	,042	-,015	-,017	-,086
	Correlation						
	Sig. (2-tailed)		,179	,360	,749	,709	,088
	Ν	467	467	467	467	467	393
Age	Pearson	-,062	1	-,024	-,045	,149**	-,089
	Correlation						
	Sig. (2-tailed)	,179		,606	,329	,001	,079
	Ν	467	467	467	467	467	393
Kinship_n_close	Pearson	,042	-,024	1	,065	-,026	,081
	Correlation						
	Sig. (2-tailed)	,360	,606		,160	,569	,108
	Ν	467	467	467	467	467	393
log_wealth	Pearson	-,015	-,045	,065	1	-,035	,041
	Correlation						
	Sig. (2-tailed)	,749	,329	,160		,450	,417
	Ν	467	467	467	467	467	393
Friends_outdegre	Pearson	-,017	,149**	-,026	-,035	1	-,028
е	Correlation						
	Sig. (2-tailed)	,709	,001	,569	,450		,573
	Ν	467	467	467	467	467	393
Generosity_01	Pearson	-,086	-,089	,081	,041	-,028	1
	Correlation						
	Sig. (2-tailed)	,088	,079	,108	,417	,573	
	Ν	393	393	393	393	393	393

**. Correlation is significant at the 0.01 level (2-tailed).

		,	-			
		Sum of Squares	df	Mean Square	F	Sig.
Sex_bi	Between Groups	,456	3	,152	,622	,601
	Within Groups	113,120	463	,244		
	Total	113,576	466			
Age	Between Groups	5820,723	3	1940,241	6,672	,000
	Within Groups	134650,225	463	290,821		
	Total	140470,948	466			
Kinship_n_close	Between Groups	146,835	3	48,945	7,340	,000
	Within Groups	3087,375	463	6,668		
	Total	3234,210	466			
log_wealth	Between Groups	16,780	3	5,593	15,792	,000
	Within Groups	163,992	463	,354		
	Total	180,773	466			
Friends_outdegree	Between Groups	123,256	3	41,085	17,634	,000
	Within Groups	1078,748	463	2,330		
	Total	1202,004	466			
Generosity_01	Between Groups	1,514	3	,505	4,095	,007
	Within Groups	47,927	389	,123		
	Total	49,440	392			

ANOVA

ANOVA Effect Sizes^{a,b}

			95% Confide	nce Interval
		Point Estimate	Lower	Upper
Sex_bi	Eta-squared	,004	,000,	,016
	Epsilon-squared	-,002	-,006	,010
	Omega-squared Fixed-effect	-,002	-,006	,010
	Omega-squared Random-effect	-,001	-,002	,003
Age	Eta-squared	,041	,010	,078
	Epsilon-squared	,035	,004	,072
	Omega-squared Fixed-effect	,035	,004	,071
	Omega-squared Random-effect	,012	,001	,025
Kinship_n_close	Eta-squared	,045	,012	,083
	Epsilon-squared	,039	,006	,077
	Omega-squared Fixed-effect	,039	,006	,077
	Omega-squared Random-effect	,013	,002	,027
log_wealth	Eta-squared	,093	,045	,141
	Epsilon-squared	,087	,039	,136
	Omega-squared Fixed-effect	,087	,039	,135

	Omega-squared Random-effect	,031	,013	,050
Friends_outdegree	Eta-squared	,103	,053	,152
	Epsilon-squared	,097	,046	,147
	Omega-squared Fixed-effect	,097	,046	,147
	Omega-squared Random-effect	,034	,016	,054
Generosity_01	Eta-squared	,031	,003	,065
	Epsilon-squared	,023	-,005	,058
	Omega-squared Fixed-effect	,023	-,005	,058
	Omega-squared Random-effect	,008	-,002	,020

a. Eta-squared and Epsilon-squared are estimated based on the fixed-effect model.

b. Negative but less biased estimates are retained, not rounded to zero.

Syntax

```
REGRESSION
  /MISSING LISTWISE
  /STATISTICS COEFF OUTS R ANOVA
  /CRITERIA=PIN(.05) POUT(.10)
  /NOORIGIN
  /DEPENDENT GiveOther
  /METHOD=ENTER Age Sex_bi Friends_outdegree Kinship_n hh_wealth coastal lowland
highland altiplano
  /SAVE RESID.
RECODE RES 1 (MISSING=0) (ELSE=1) INTO obs.
EXECUTE.
USE ALL.
COMPUTE filter_$=(obs = 1).
VARIABLE LABELS filter $ 'obs = 1 (FILTER)'.
VALUE LABELS filter \$ \overline{0} 'Not Selected' 1 'Selected'.
FORMATS filter_$ (f1.0).
FILTER BY filter $.
EXECUTE.
*Manually add case 321 to obs = 0, because the value of 6,4166 is a error.
CORRELATIONS
  /VARIABLES=Sex bi Age Kinship n close log wealth Friends outdegree
Generosity_01
  /PRINT=TWOTAIL NOSIG FULL
  /MISSING=PAIRWISE.
ONEWAY Sex_bi Age Kinship_n_close log_wealth Friends_outdegree Generosity_01 BY
community_ANOVA
  /ES=OVERALL
  /STATISTICS DESCRIPTIVES
  /PLOT MEANS
  /MISSING ANALYSIS
  /CRITERIA=CILEVEL(0.95).
```

Correlations and ANOVA for all cases without missing data:

Correlations

				Kinship_n_clo		Friends_outd	Generosity_0
		Sex_bi	Age	se	log_wealth	egree	1
Sex_bi	Pearson Correlation	1	-,048	,028	-,014	,011	-,087
	Sig. (2-tailed)		,345	,576	,789	,827	,085
	Ν	392	392	392	392	392	392
Age	Pearson Correlation	-,048	1	-,066	-,033	,117*	-,087
	Sig. (2-tailed)	,345		,196	,514	,020	,086
	Ν	392	392	392	392	392	392
Kinship_n_close	Pearson Correlation	,028	-,066	1	,120 [*]	-,009	,080
	Sig. (2-tailed)	,576	,196		,018	,854	,112
	Ν	392	392	392	392	392	392
log_wealth	Pearson Correlation	-,014	-,033	,120 [*]	1	-,037	,041
	Sig. (2-tailed)	,789	,514	,018		,465	,414
	N	392	392	392	392	392	392
Friends_outdegree	Pearson Correlation	,011	,117*	-,009	-,037	1	-,028
	Sig. (2-tailed)	,827	,020	,854	,465		,585
	N	392	392	392	392	392	392
Generosity_01	Pearson Correlation	-,087	-,087	,080,	,041	-,028	1
	Sig. (2-tailed)	,085	,086	,112	,414	,585	
	N	392	392	392	392	392	392

*. Correlation is significant at the 0.05 level (2-tailed).

		ANOVA	٠ ١			
		Sum of Squares	df	Mean Square	F	Sig.
Sex_bi	Between Groups	,823	3	,274	1,146	,330
	Within Groups	92,889	388	,239		
	Total	93,712	391			
Age	Between Groups	4534,501	3	1511,500	5,042	,002
	Within Groups	116304,755	388	299,755		
	Total	120839,256	391			
Kinship_n_close	Between Groups	149,872	3	49,957	7,526	,000
	Within Groups	2575,679	388	6,638		
	Total	2725,551	391			
log_wealth	Between Groups	14,149	3	4,716	13,008	,000
	Within Groups	140,685	388	,363		
	Total	154,835	391			
Friends_outdegree	Between Groups	124,910	3	41,637	17,824	,000
	Within Groups	906,355	388	2,336		
	Total	1031,265	391			
Generosity_01	Between Groups	1,508	3	,503	4,072	,007
	Within Groups	47,910	388	,123		
	Total	49,418	391			

ΔΝΟVΔ

ANOVA Effect Sizes^{a,b}

			95% Confide	ence Interval				
		Point Estimate	Lower	Upper				
Sex_bi	Eta-squared	,009	,000	,029				
	Epsilon-squared	,001	-,008	,021				
	Omega-squared Fixed-effect	,001	-,008	,021				
	Omega-squared Random-effect	,000	-,003	,007				
Age	Eta-squared	,038	,006	,075				
	Epsilon-squared	,030	-,002	,068				
	Omega-squared Fixed-effect	,030	-,002	,068				
	Omega-squared Random-effect	,010	-,001	,024				
Kinship_n_close	Eta-squared	,055	,015	,099				
	Epsilon-squared	,048	,008	,092				
	Omega-squared Fixed-effect	,048	,008	,092				
	Omega-squared Random-effect	,016	,003	,033				
log_wealth	Eta-squared	,091	,040	,144				
	Epsilon-squared	,084	,032	,137				
	Omega-squared Fixed-effect	,084	,032	,137				

	Omega-squared Random-effect	,030	,011	,050
Friends_outdegree	Eta-squared	,121	,063	,178
	Epsilon-squared	,114	,055	,172
	Omega-squared Fixed-effect	,114	,055	,171
	Omega-squared Random-effect	,041	,019	,064
Generosity 01	Eta-squared	,031	,003	,065
	Epsilon-squared	,023	-,005	,058
	Omega-squared Fixed-effect	,023	-,005	,058
	Omega-squared Random-effect	,008	-,002	,020

a. Eta-squared and Epsilon-squared are estimated based on the fixed-effect model.

b. Negative but less biased estimates are retained, not rounded to zero.

Syntax

```
SORT CASES BY community.

SPLIT FILE LAYERED BY community.

CORRELATIONS

/VARIABLES=Sex_bi Age Kinship_n_close log_wealth Friends_outdegree

Generosity_01

/PRINT=TWOTAIL NOSIG FULL

/MISSING=PAIRWISE.

SPLIT FILE OFF.

FILTER OFF.

USE ALL.

EXECUTE.
```

Correlations split by community:

	Correlations							
							Friends_	
			Sex_		Kinship_	log_we	outdegre	Generosit
commu	inity		bi	Age	n_close	alth	е	y_01
altipla	Sex_bi	Pearson	1	-,123	-,020	-,099	,036	,004
no		Correlation						
		Sig. (2-tailed)		,203	,835	,309	,710	,965
		N	108	108	108	108	108	108
	Age	Pearson	-,123	1	,001	-,159	,069	-,100
		Correlation						
		Sig. (2-tailed)	,203		,993	,100	,481	,305
		Ν	108	108	108	108	108	108
	Kinship_n_cl	Pearson	-,020	,001	1	,046	-,107	,137
	ose	Correlation						

								-
		Sig. (2-tailed)	,835	,993		,639	,269	,158
		Ν	108	108	108	108	108	108
	log_wealth	Pearson	-,099	-,159	,046	1	-,191 [*]	,010
		Correlation						
		Sig. (2-tailed)	,309	,100	,639		,048	,922
		N	108	108	108	108	108	108
	Friends_outd	Pearson	,036	,069	-,107	-,191 [*]	1	-,219*
	egree	Correlation						
		Sig. (2-tailed)	,710	,481	,269	,048		,023
		N	108	108	108	108	108	108
	Generosity 0	Pearson	.004	100	.137	.010	219*	1
	1	Correlation	,	,	,	,	,	
		Sig (2-tailed)	965	305	158	922	023	
		N	108	108	108	108	108	108
coast	Sex bi	Pearson	1	- 070	078	- 012	033	156
al		Correlation		-,070	,070	-,012	,000	,100
a		Sig (2-tailed)		506	157	908	754	13/
		N	03	.000	,07	,500	,704	,104
		Deersen	93	93	93	93	93	93
	Age	Correlation	-,070	1	-,157	,000	-,093	-,133
			506		100	401		204
		Sig. (2-tailed)	,500		,133	,401	,374	,204
		N	93	93	93	93	93	93
	Kinship_n_cl	Pearson	,078	-,157	1	,029	,010	,244
	ose	Correlation						
		Sig. (2-tailed)	,457	,133		,785	,922	,019
		N	93	93	93	93	93	93
	log_wealth	Pearson	-,012	,088	,029	1	,207*	,088
		Correlation						
		Sig. (2-tailed)	,908	,401	,785		,046	,402
		N	93	93	93	93	93	93
	Friends_outd	Pearson	,033	-,093	,010	,207*	1	,035
	egree	Correlation						
		Sig. (2-tailed)	,754	,374	,922	,046		,736
		Ν	93	93	93	93	93	93
	Generosity_0	Pearson	,156	-,133	,244*	,088	,035	1
	1	Correlation						
		Sig. (2-tailed)	,134	,204	,019	,402	,736	
		Ν	93	93	93	93	93	93
highla	Sex_bi	Pearson	1	,178	-,071	,003	,002	-,268*
nd		Correlation						
		Sig. (2-tailed)		,190	,602	,984	,988	,046

		N	56	56	56	56	56	56
	Age	Pearson	,178	1	-,148	,114	-,071	-,381**
		Correlation						
		Sig. (2-tailed)	,190		,276	,405	,602	,004
		N	56	56	56	56	56	56
	Kinship_n_cl	Pearson	-,071	-,148	1	,390**	,287*	,093
	ose	Correlation						
		Sig. (2-tailed)	,602	,276		,003	,032	,494
		N	56	56	56	56	56	56
	log_wealth	Pearson	,003	,114	,390**	1	,058	-,026
		Correlation						
		Sig. (2-tailed)	,984	,405	,003		,670	,852
		N	56	56	56	56	56	56
	Friends_outd	Pearson	,002	-,071	,287 [*]	,058	1	,075
	egree	Correlation						
	-	Sig. (2-tailed)	,988	,602	,032	,670		,580
		N	56	56	56	56	56	56
	Generosity 0	Pearson	- 268*		093	- 026	075	1
	1	Correlation	,200	.381**	,000	,020	,010	
		Sig (2-tailed)	046	004	494	852	580	
		N	56	56	56	,002	56	56
lowlan	Sex bi	Pearson	1	- 103	110	019	031	- 200*
d	Jex_bi	Correlation		-,100	,110	,013	,001	-,200
u		Sig (2-tailed)		233	205	828	724	020
		N	125	,200	,205	125	125	,020
		Deereen	102	100	109	021	079**	001
	Age	Correlation	-,103	1	,100	,021	,270	,001
		Sig (2 toiled)	222		012	000	001	252
		Sig. (2-tailed)	,200	405	,213	,000	,001	,303
		<u>N</u>	135	135	135	135	135	135
	Kinship_n_cl	Pearson	,110	,108	1	,037	,190	-,206
	ose	Correlation						
		Sig. (2-tailed)	,205	,213		,670	,027	,016
		N	135	135	135	135	135	135
	log_wealth	Pearson	,019	,021	,037	1	,000	-,030
		Correlation						
		Sig. (2-tailed)	,828	,808,	,670		,999	,727
		N	135	135	135	135	135	135
	Friends_outd	Pearson	,031	,278**	,190 [*]	,000	1	,012
	egree	Correlation						
		Sig. (2-tailed)	,724	,001	,027	,999		,887
		Ν	135	135	135	135	135	135

Generosity_0	Pearson	-,200*	,081	-,206*	-,030	,012	1
1	Correlation						
	Sig. (2-tailed)	,020	,353	,016	,727	,887	
	N	135	135	135	135	135	135

*. Correlation is significant at the 0.05 level (2-tailed).

**. Correlation is significant at the 0.01 level (2-tailed).

Models

Syntax

```
USE ALL.
COMPUTE filter_$=(obs = 1).
VARIABLE LABELS filter $ 'obs = 1 (FILTER)'.
VALUE LABELS filter \$ 0 'Not Selected' 1 'Selected'.
FORMATS filter_$ (f1.0).
FILTER BY filter $.
EXECUTE.
LOGISTIC REGRESSION VARIABLES Generosity 01
 /METHOD=ENTER Sex_bi Age
  /METHOD=ENTER Sex_bi Age log_wealth
  /METHOD=ENTER Sex_bi Age log_wealth Kinship_n_close
  /METHOD=ENTER Sex_bi Age log_wealth Kinship_n_close Friends_outdegree
 /SAVE=COOK LEVER DFBETA ZRESID DEV
  /CLASSPLOT
  /PRINT=GOODFIT CORR CI(95)
  /CRITERIA=PIN(0.05) POUT(0.10) ITERATE(20) CUT(0.5).
LOGISTIC REGRESSION VARIABLES Generosity_01
 /METHOD=ENTER Sex bi Age
  /METHOD=ENTER Sex bi Age log wealth
  /METHOD=ENTER Sex_bi Age log_wealth Friends_outdegree
  /METHOD=ENTER Sex bi Age log wealth Kinship n close Friends outdegree
  /SAVE=COOK LEVER DFBETA ZRESID DEV
 /CLASSPLOT
  /PRINT=GOODFIT CORR CI(95)
  /CRITERIA=PIN(0.05) POUT(0.10) ITERATE(20) CUT(0.5).
REGRESSION
 /MISSING LISTWISE
  /STATISTICS COEFF OUTS R ANOVA
  /CRITERIA=PIN(.05) POUT(.10)
  /NOORIGIN
  /DEPENDENT log wealth
 /METHOD=ENTER Sex bi Age Kinship n close.
REGRESSION
  /MISSING LISTWISE
  /STATISTICS COEFF OUTS R ANOVA
  /CRITERIA=PIN(.05) POUT(.10)
  /NOORIGIN
  /DEPENDENT Friends outdegree
  /METHOD=ENTER Sex_bi Age log_wealth.
```

Empty model:

Block 0: Beginning Block

Variables in the Equation

		В	S.E.	Wald	df	Sig.	Exp(B)
Step 0	Constant	1,751	,142	151,464	1	,000	5,759

Model 1: Sex, Age -> Generosity

Block 1: Method = Enter

Omnibus Tests of Model Coefficients

		Chi-square	df	Sig.
Step 1	Step	6,298	2	,043
	Block	6,298	2	,043
	Model	6,298	2	,043

Model Summary

		Cox & Snell R	Nagelkerke R
Step	-2 Log likelihood	Square	Square
1	322,318ª	,016	,028

a. Estimation terminated at iteration number 5 because parameter estimates changed by less than ,001.

Hosmer and Lemeshow Test

Step	Chi-square	df	Sig.
1	5,336	8	,721

Classification Table^a

	_		Predicted					
	_		Genero	Generosity_01 Percent				
	Observed		,00	1,00	Correct			
Step 1	Generosity_01	,00	0	58	,0			
		1,00	0	334	100,0			
	Overall Percentag	e			85,2			

a. The cut value is ,500

_

Г

Variables in the Equation

								95% C.I.f	or EXP(B)
		В	S.E.	Wald	df	Sig.	Exp(B)	Lower	Upper
Step 1ª	Sex_bi	-,559	,311	3,234	1	,072	,572	,311	1,052
	Age	-,014	,008	3,258	1	,071	,986	,971	1,001
	Constant	2,745	,455	36,394	1	,000	15,563		

a. Variable(s) entered on step 1: Sex_bi, Age.

Model 2: Sex, Age, Wealth -> Generosity

Block 2: Method = Enter

Omnibus Tests of Model Coefficients

		Chi-square	df	Sig.
Step 1	Step	,543	1	,461
	Block	,543	1	,461
	Model	6,841	3	,077

Model Summary

		Cox & Snell R	Nagelkerke R
Step	-2 Log likelihood	Square	Square
1	321,775ª	,017	,030

a. Estimation terminated at iteration number 5 because parameter estimates changed by less than ,001.

Hosmer and Lemeshow Test

Step	Chi-square	df	Sig.
1	8,250	8	,409

Classification Table^a

Predicted

					Percentage
			,00	1,00	Correct
Step 1	Generosity_01	,00	0	58	,0
		1,00	0	334	100,0
	Overall Percentag	е			85,2

a. The cut value is ,500

Variables in the Equation

								95% C.I.fo	or EXP(B)
		В	S.E.	Wald	df	Sig.	Exp(B)	Lower	Upper
Step 1 ^a	Sex_bi	-,558	,311	3,215	1	,073	,572	,311	1,053
	Age	-,014	,008	3,172	1	,075	,986	,971	1,001
	log_wealth	,166	,221	,563	1	,453	1,180	,765	1,821
	Constant	2,125	,934	5,173	1	,023	8,373		

a. Variable(s) entered on step 1: Sex_bi, Age, log_wealth.

Model 3: Sex, Age, Wealth, Kinship -> Generosity

Block 3: Method = Enter

Omnibus Tests of Model Coefficients

		Chi-square	df	Sig.
Step 1	Step	2,522	1	,112
	Block	2,522	1	,112
	Model	9,363	4	,053

Model Summary

		Cox & Snell R	Nagelkerke R
Step	-2 Log likelihood	Square	Square
1	319,253ª	,024	,042

a. Estimation terminated at iteration number 5 because parameter estimates changed by less than ,001.

Hosmer and Lemeshow Test

Step Chi-square df Sig.

|--|

Classification Table^a

			Predicted					
		Generosity_01 Percen						
	Observed		,00	1,00	Correct			
Step 1	Generosity_01	,00	0	58	,0			
		1,00	0	334	100,0			
	Overall Percentage				85,2			

a. The cut value is ,500

Г

Variables in the Equation

								95% C.I.f	or EXP(B)
		В	S.E.	Wald	df	Sig.	Exp(B)	Lower	Upper
Step 1 ^a	Sex_bi	-,579	,313	3,433	1	,064	,560	,304	1,034
	Age	-,014	,008	2,937	1	,087	,986	,971	1,002
	log_wealth	,125	,223	,312	1	,577	1,133	,731	1,755
	Kinship_n_close	,099	,066	2,235	1	,135	1,104	,970	1,256
	Constant	2,085	,938	4,944	1	,026	8,045		

a. Variable(s) entered on step 1: Sex_bi, Age, log_wealth, Kinship_n_close.

Model 7: Sex, Age, Wealth, Kinship, Friendship -> Generosity

Block 4: Method = Enter

Omnibus Tests of Model Coefficients

		Chi-square	df	Sig.
Step 1	Step	,096	1	,757
	Block	,096	1	,757
	Model	9,459	5	,092

Model Summary

		Cox & Snell R	Nagelkerke R
Step	-2 Log likelihood	Square	Square
1	319,156ª	,024	,042

a. Estimation terminated at iteration number 5 because parameter estimates changed by less than ,001.

Hosmer and Lemeshow Test

Step	Chi-square	df	Sig.
1	4,297	8	,829

Classification Table ^a							
			Predicted				
		Generosity_01 Percentag					
	Observed		,00	1,00	Correct		
Step 1	Generosity_01	,00	0	58	,0		
		1,00	0	334	100,0		
	Overall Percentage				85,2		

a. The cut value is ,500

Variables in the Equation

								95% C.I.f	or EXP(B)
		В	S.E.	Wald	df	Sig.	Exp(B)	Lower	Upper
Step 1 ^a	Sex_bi	-,578	,313	3,418	1	,064	,561	,304	1,035
	Age	-,013	,008	2,765	1	,096	,987	,971	1,002
	log_wealth	,123	,224	,304	1	,581	1,131	,730	1,754
	Kinship_n_close	,099	,066	2,241	1	,134	1,104	,970	1,257
	Friends_outdegree	-,027	,087	,097	1	,755	,973	,821	1,153
	Constant	2,111	,942	5,018	1	,025	8,257		

a. Variable(s) entered on step 1: Sex_bi, Age, log_wealth, Friends_outdegree.

Model 5: Sex, Age, Wealth, Friendship -> Generosity

Block 3: Method = Enter

Omnibus Tests of Model Coefficients

		Chi-square	df	Sig.
Step 1	Step	,089	1	,765
	Block	,089	1	,765
	Model	6,930	4	,140

Model Summary

		Cox & Snell R	Nagelkerke R
Step	-2 Log likelihood	Square	Square
1	321,685ª	,018	,031

a. Estimation terminated at iteration number 5 because parameter estimates changed by less than ,001.

Hosmer and Lemeshow Test

Step	Chi-square	df	Sig.
1	8,319	8	,403

Classification Table ^a					
	_	Predicted			
	_		Genero	sity_01	Percentage
	Observed		,00	1,00	Correct
Step 1	Generosity_01	,00	0	58	,0
		1,00	0	334	100,0
	Overall Percentag	ge			85,2

a. The cut value is ,500

Variables in the Equation

								95% C.I.f	or EXP(B)
		В	S.E.	Wald	df	Sig.	Exp(B)	Lower	Upper
Step 1 ^a	Sex_bi	-,557	,311	3,207	1	,073	,573	,311	1,054
	Age	-,014	,008	3,003	1	,083	,986	,971	1,002
	log_wealth	,164	,221	,550	1	,459	1,178	,764	1,818
	Friends_outdegre	-,026	,087	,091	1	,763	,974	,821	1,155
	е								
	Constant	2,154	,940	5,250	1	,022	8,619		

a. Variable(s) entered on step 1: Sex_bi, Age, log_wealth, Friends_outdegree.

Model 7: Sex, Age, Wealth, Kinship, Friendship -> Generosity

Block 4: Method = Enter

Omnibus Tests of Model Coefficients

		Chi-square	df	Sig.
Step 1	Step	2,529	1	,112
	Block	2,529	1	,112
	Model	9,459	5	,092

Model Summary

		Cox & Snell R	Nagelkerke R
Step	-2 Log likelihood	Square	Square
1	319,156ª	,024	,042

a. Estimation terminated at iteration number 5 because parameter estimates changed by less than ,001.

Hosmer and Lemeshow Test

Step	Chi-square	df	Sig.
1	4,297	8	,829

Classification Table^a

			Predicted			
			Generosity_01		Percentage	
	Observed		,00	1,00	Correct	
Step 1	Generosity_01	,00	0	58	,0	
		1,00	0	334	100,0	
Overall Percentage				85,2		

a. The cut value is ,500

г
								95% EXI	C.I.for P(B)
		В	S.E.	Wald	df	Sig.	Exp(B)	Lower	Upper
Step 1ª	Sex_bi	-,578	,313	3,418	1	,064	,561	,304	1,035
	Age	-,013	,008	2,765	1	,096	,987	,971	1,002
	log_wealth	,123	,224	,304	1	,581	1,131	,730	1,754
	Friends_outde gree	-,027	,087	,097	1	,755	,973	,821	1,153
	Kinship_n_clo se	,099	,066	2,241	1	,134	1,104	,970	1,257
	Constant	2,111	,942	5,018	1	,025	8,257		

Variables in the Equation

a. Variable(s) entered on step 1: Sex_bi, Age, log_wealth, Friends_outdegree, Kinship_n_close.

Model 4: Sex, Age, Kinship -> Wealth

Regression

Model Summary							
			Adjusted R	Std. Error of the			
Model	R	R Square	Square	Estimate			
1	,124ª	,015	,008	,62685			

a. Predictors: (Constant), Kinship_n_close, Sex_bi, Age

ANOVA^a

Model		Sum of Squares	df	Mean Square	F	Sig.	
1	Regression	2,372	3	,791	2,012	,112 ^b	
	Residual	152,463	388	,393			
	Total	154,835	391				

a. Dependent Variable: log_wealth

b. Predictors: (Constant), Kinship_n_close, Sex_bi, Age

Coefficients^a

				Standardized		
		Unstandardized Coefficients		Coefficients		
Model		В	Std. Error	Beta	t	Sig.
1	(Constant)	3,696	,098		37,644	,000
	Sex_bi	-,023	,065	-,018	-,361	,719
	Age	-,001	,002	-,026	-,517	,606
	Kinship_n_close	,028	,012	,119	2,349	,019

a. Dependent Variable: log_wealth

Model 6: Sex, Age, Wealth -> Friendship

Regression

Model Summary							
			Adjusted R	Std. Error of the			
Model	R	R Square	Square	Estimate			
1	,123ª	,015	,007	1,618			

a. Predictors: (Constant), log_wealth, Sex_bi, Age

ANOVA^a F Sum of Squares df Mean Square Sig. Model 1 Regression 15,543 3 5,181 1,979 ,117^b 1015,722 Residual 388 2,618 Total 1031,265 391

a. Dependent Variable: Friends_outdegree

b. Predictors: (Constant), log_wealth, Sex_bi, Age

Coefficients^a

				Standardized		
		Unstandardize	Unstandardized Coefficients			
Model		В	Std. Error	Beta	t	Sig.
1	(Constant)	1,129	,546		2,067	,039
	Sex_bi	,054	,167	,016	,322	,748
	Age	,011	,005	,117	2,314	,021
	log_wealth	-,085	,130	-,033	-,654	,514

a. Dependent Variable: Friends_outdegree

Syntax

```
SORT CASES BY community.
SPLIT FILE LAYERED BY community.
LOGISTIC REGRESSION VARIABLES Generosity_01
/METHOD=ENTER Sex_bi Age
/METHOD=ENTER Sex_bi Age log_wealth
/METHOD=ENTER Sex_bi Age log_wealth Kinship_n_close
/METHOD=ENTER Sex_bi Age log_wealth Friends_outdegree
/METHOD=ENTER Sex_bi Age log_wealth Kinship_n_close Friends_outdegree
/CLASSPLOT
/PRINT=GOODFIT CORR CI(95)
/CRITERIA=PIN(0.05) POUT(0.10) ITERATE(20) CUT(0.5).
SPLIT FILE OFF.
```

Models split by community: Block 4: Method = Enter

community			Chi-square	df	Sig.
altiplano	Step 1	Step	3,461	1	,063
		Block	3,461	1	,063
		Model	7,010	5	,220
coastal	Step 1	Step	,018	1	,892
	·	Block	,018	1	,892
		Model	13,455	5	,019
highland	Step 1	Step	,303	1	,582
		Block	,303	1	,582
		Model	12,329	5	,031
lowland	Step 1	Step	,242	1	,623
		Block	,242	1	,623
		Model	11,576	5	,041

Omnibus Tests of Model Coefficients

Model Summary

			Cox & Snell R	Nagelkerke R
community	Step	-2 Log likelihood	Square	Square
altiplano	1	76,297ª	,063	,117
coastal	1	45,681 ^b	,135	,286
highland	1	16,491°	,198	,491
lowland	1	133,908 ^d	,082	,125

a. Estimation terminated at iteration number 6 because parameter estimates changed by less than ,001 for split file community = altiplano.

b. Estimation terminated at iteration number 8 because parameter estimates changed by less than ,001 for split file community = coastal.

c. Estimation terminated at iteration number 20 because maximum iterations has been reached. Final solution cannot be found for split file community = highland.

d. Estimation terminated at iteration number 5 because parameter estimates changed by less than ,001 for split file community = lowland.

Hosmer and Lemeshow Test

community	Step	Chi-square	df	Sig.
altiplano	1	7,319	8	,503
coastal	1	5,996	8	,648
highland	1	1,886	7	,966
lowland	1	3,659	8	,886

Classification Table^a

				Predicted				
				Genero	sity_01	Percentage		
community		Observed		,00	1,00	Correct		
altiplano	Step 1	Generosity_01	,00	0	14	,0		
			1,00	1	93	98,9		
		Overall Percentage				86,1		
coastal	Step 1	tep 1 Generosity_01	,00	0	9	,0		
			1,00	0	84	100,0		
		Overall Percentage				90,3		
highland	Step 1	Generosity_01	,00	1	3	25,0		
			1,00	1	51	98,1		
		Overall Percentage				92,9		
lowland	Step 1	Generosity_01	,00	0	31	,0		
			1,00	4	100	96,2		
		Overall Percentage				74,1		

									95% (EXF	C.I.for P(B)
communi	ty		В	S.E.	Wald	df	Sig.	Exp(B)	Lower	Upper
altiplano	Step 1 ^a	Sex_bi	-,003	,635	,000	1	,996	,997	,287	3,457
		Age	-,017	,018	,926	1	,336	,983	,948	1,018
		log_wealth	-,376	,816	,212	1	,645	,686	,139	3,400
		Kinship_n_close	,149	,127	1,367	1	,242	1,160	,904	1,488
		Friends_outdegre	-,583	,314	3,441	1	,064	,558	,301	1,034
		е								
		Constant	4,106	3,605	1,298	1	,255	60,729		
coastal	Step 1 ^a	Sex_bi	,878	,795	1,218	1	,270	2,405	,506	11,435
		Age	-,039	,028	1,947	1	,163	,962	,911	1,016
		log_wealth	,217	,443	,240	1	,624	1,243	,521	2,963
		Kinship_n_close	,959	,534	3,229	1	,072	2,610	,917	7,432
		Friends_outdegre	-,027	,200	,019	1	,891	,973	,658	1,439
		е								
		Constant	2,013	1,890	1,134	1	,287	7,486		
highland	Step 1 ^a	Sex_bi	-18,931	6931,29	,000	1	,998	,000	,000	
				8						
		Age	-,092	,052	3,169	1	,075	,912	,825	1,009
		log_wealth	,965	2,787	,120	1	,729	2,624	,011	618,065
		Kinship_n_close	-,079	,484	,026	1	,871	,924	,358	2,388
		Friends_outdegre	,253	,469	,291	1	,590	1,288	,514	3,228
		е								
		Constant	21,487	6931,30	,000	1	,998	2145365219		
				4				,625		
lowland	Step 1 ^a	Sex_bi	-1,025	,508	4,076	1	,043	,359	,133	,970
		Age	,011	,012	,789	1	,374	1,011	,987	1,036
		log_wealth	-,070	,315	,049	1	,825	,933	,503	1,731
		Kinship_n_close	-,268	,119	5,058	1	,025	,765	,606	,966
		Friends_outdegre	,066	,136	,236	1	,627	1,068	,819	1,393
		е								
		Constant	1,974	1,325	2,221	1	,136	7,201		

Variables in the Equation

a. Variable(s) entered on step 1: Sex_bi, Age, log_wealth, Friends_outdegree.

Block 5: Method = Enter

Omnibus Tests of Model Coefficients

community			Chi-square	df	Sig.
altiplano	Step 1	Model	7,010	5	,220
coastal	Step 1	Model	13,455	5	,019
highland	Step 1	Model	12,329	5	,031
lowland	Step 1	Model	11,576	5	,041

Model Summary

			Cox & Snell R	Nagelkerke R
community	Step	-2 Log likelihood	Square	Square
altiplano	1	76,297ª	,063	,117
coastal	1	45,681 ^b	,135	,286
highland	1	16,491°	,198	,491
lowland	1	133,908 ^d	,082	,125

a. Estimation terminated at iteration number 6 because parameter estimates changed

by less than ,001 for split file community = altiplano.

b. Estimation terminated at iteration number 8 because parameter estimates changed by less than ,001 for split file community = coastal.

c. Estimation terminated at iteration number 20 because maximum iterations has been reached. Final solution cannot be found for split file community = highland.

d. Estimation terminated at iteration number 5 because parameter estimates changed by less than ,001 for split file community = lowland.

Hosmer and Lemeshow Test

community	Step	Chi-square	df	Sig.	
altiplano	1	7,319	8	,503	
coastal	1	5,996	8	,648	
highland	1	1,886	7	,966	
lowland	1	3,659	8	,886	

Classification Table^a

				Predicted			
			Generosity_01			Percentage	
community		Observed		,00	1,00	Correct	
altiplano	Step 1	Generosity_01	,00	0	14	,0	
			1,00	1	93	98,9	
		Overall Percentage				86,1	
coastal Step 1	Step 1	Generosity_01	,00	0	9	,0	
		1,00	0	84	100,0		
		Overall Percentage				90,3	
highland	Step 1	Generosity 01	,00	1	3	25,0	
Č (·		1,00	1	51	98,1	
		Overall Percentage				92,9	
lowland	Step 1	Generosity 01	,00,	0	31	,0	
			1.00	4	100	96.2	
		Overall Percentage				74,1	

a. The cut value is ,500

Variables in the Equation

									95%	C.I.for
									EXF	Р(В)
commu	nity		В	S.E.	Wald	df	Sig.	Exp(B)	Lower	Upper
altipla	Step	Sex_bi	-,003	,635	,000	1	,996	,997	,287	3,457
no	1 ^a	Age	-,017	,018	,926	1	,336	,983	,948	1,018
		log_wealth	-,376	,816	,212	1	,645	,686	,139	3,400
		Kinship_n_clo se	,149	,127	1,367	1	,242	1,160	,904	1,488
		Friends_outd egree	-,583	,314	3,441	1	,064	,558	,301	1,034
		Constant	4,106	3,605	1,298	1	,255	60,729		
coasta I	Step 1ª	Sex_bi	,878	,795	1,218	1	,270	2,405	,506	11,43 5
		Age	-,039	,028	1,947	1	,163	,962	,911	1,016
		log_wealth	,217	,443	,240	1	,624	1,243	,521	2,963
	Kinship_n_clo	,959	,534	3,229	1	,072	2,610	,917	7,432	
		Friends_outd egree	-,027	,200	,019	1	,891	,973	,658	1,439
		Constant	2,013	1,890	1,134	1	,287	7,486		

highla nd	Step 1ª	Sex_bi	- 18,93 1	6931,2 98	,000	1	,998	,000	,000	
		Age	-,092	,052	3,169	1	,075	,912	,825	1,009
		log_wealth	,965	2,787	,120	1	,729	2,624	,011	618,0 65
		Kinship_n_clo	-,079	,484	,026	1	,871	,924	,358	2,388
		Friends_outd egree	,253	,469	,291	1	,590	1,288	,514	3,228
		Constant	21,48 7	6931,3 04	,000	1	,998	21453652 19,625		
lowlan	Step	Sex_bi	-1,025	,508	4,076	1	,043	,359	,133	,970
d	1 ^a	Age	,011	,012	,789	1	,374	1,011	,987	1,036
		log_wealth	-,070	,315	,049	1	,825	,933	,503	1,731
	Kinship_n_clo se	-,268	,119	5,058	1	,025	,765	,606	,966	
		Friends_outd egree	,066	,136	,236	1	,627	1,068	,819	1,393
		Constant	1,974	1,325	2,221	1	,136	7,201		

a. Variable(s) entered on step 1: Sex_bi, Age, log_wealth, Kinship_n_close, Friends_outdegree.

Extra analysis without sex

I did one extra analysis for the Highland community without the variable sex due to an extreme high standard error.

```
USE ALL.
COMPUTE filter_$=(obs = 1).
VARIABLE LABELS filter_$ 'obs = 1 (FILTER)'.
VALUE LABELS filter_$ 0 'Not Selected' 1 'Selected'.
FORMATS filter_$ (f1.0).
FILTER BY filter_$.
EXECUTE
.
SORT CASES BY community.
SPLIT FILE LAYERED BY community.
LOGISTIC REGRESSION VARIABLES Generosity_01
/METHOD=ENTER Age log_wealth Kinship_n_close Friends_outdegree
/SAVE=COOK LEVER DFBETA ZRESID DEV
/CLASSPLOT
/PRINT=GOODFIT CORR CI(95)
/CRITERIA=PIN(0.05) POUT(0.10) ITERATE(20) CUT(0.5).
```

Block 0: Beginning Block

				Predicted				
				Generosity_01		Percentage		
community		Observed		,00	1,00	Correct		
altiplano	Step 0	Generosity_01	,00	0	14	,0		
			1,00	0	94	100,0		
		Overall Percentag	е			87,0		
coastal Step	Step 0	Generosity_01	,00	0	9	,0		
			1,00	0	84	100,0		
		Overall Percentag	е			90,3		
highland	Step 0	Step 0 Generosity 01	,00	0	4	,0		
			1,00	0	52	100,0		
		Overall Percentag	е			92,9		
lowland	Step 0	Generosity_01	,00	0	31	,0		
			1,00	0	104	100,0		
		Overall Percentag	е			77,0		

Classification Table^{a,b}

a. Constant is included in the model.

b. The cut value is ,500

Variables in the Equation

community			В	S.E.	Wald	df	Sig.	Exp(B)
altiplano	Step 0 ^a	Constant	1,904	,286	44,185	1	,000	6,714
coastal	Step 0ª	Constant	2,234	,351	40,555	1	,000	9,333
highland	Step 0 ^a	Constant	2,565	,519	24,436	1	,000	13,000
lowland	Step 0 ^a	Constant	1,210	,205	34,988	1	,000	3,355

a. Variable(s) entered on step 1: Age, log_wealth, Kinship_n_close, Friends_outdegree.

Block 1: Method = Enter

Omnibus Tests of Model Coefficients

community		Chi-square	df	Sig.	
altiplano	Step 1	Step	7,010	4	,135

					-
		Block	7,010	4	,135
		Model	7,010	4	,135
coastal	Step 1	Step	12,182	4	,016
		Block	12,182	4	,016
		Model	12,182	4	,016
highland	Step 1	Step	8,249	4	,083
-		Block	8,249	4	,083
		Model	8,249	4	,083
lowland	Step 1	Step	7,019	4	,135
		Block	7,019	4	,135
		Model	7,019	4	,135

Model Summary

			Cox & Snell R	Nagelkerke R
community	Step	-2 Log likelihood	Square	Square
altiplano	1	76,297ª	,063	,117
coastal	1	46,954 ^b	,123	,261
highland	1	20,571°	,137	,340
lowland	1	138,464 ^d	,051	,077

a. Estimation terminated at iteration number 6 because parameter estimates changed by less than ,001 for split file community = altiplano.

b. Estimation terminated at iteration number 8 because parameter estimates changed by less than ,001 for split file community = coastal.

c. Estimation terminated at iteration number 8 because parameter estimates

changed by less than ,001 for split file community = highland.

d. Estimation terminated at iteration number 4 because parameter estimates changed by less than ,001 for split file community = lowland.

Hosmer and Lemeshow Test

community	Step	Chi-square	df	Sig.	
altiplano	1	7,320	8	,503	
coastal	1	8,291	8	,406	
highland	1	3,376	7	.848	
lowland	1	6,634	8	,577	

Classification Table^a

community

Observed

				Generosity_01		Percentage
				,00	1,00	Correct
altiplano	Step 1	Generosity_01	,00	0	14	,0
			1,00	1	93	98,9
		Overall Percentag	ge			86,1
coastal	Step 1	Generosity_01	,00	0	9	,0
			1,00	0	84	100,0
		Overall Percentag	ge			90,3
highland	Step 1	Generosity_01	,00	1	3	25,0
			1,00	0	52	100,0
		Overall Percentag	ge			94,6
lowland	Step 1	Generosity_01	,00	0	31	,0
			1,00	2	102	98,1
		Overall Percentag	ge			75,6

a. The cut value is ,500

			Varia	ables in	the Eq	uation				
									95% (EXF	C.I.for P(B)
commun	ity		В	S.E.	Wald	df	Sig.	Exp(B)	Lower	Upper
altiplan	Step	Age	-,017	,018	,961	1	,327	,983	,949	1,018
0	1 ^a	log_wealth	-,376	,815	,213	1	,644	,687	,139	3,390
		Kinship_n_clos e	,149	,127	1,367	1	,242	1,160	,904	1,488
		Friends_outdeg	-,583	,314	3,459	1	,063	,558	,302	1,032
		Constant	4,102	3,525	1,354	1	,245	60,484		
coastal	Step	Age	-,039	,026	2,222	1	,136	,961	,913	1,013
	1 ^a	log_wealth	,169	,436	,150	1	,699	1,184	,504	2,781
		Kinship_n_clos e	1,025	,548	3,497	1	,061	2,788	,952	8,164
		Friends_outdeg	-,005	,200	,001	1	,980	,995	,672	1,473
		Constant	2,555	1,826	1,957	1	,162	12,866		
highlan	Step	Age	-,101	,053	3,689	1	,055	,904	,815	1,002
d	1 ^a	log_wealth	1,217	2,410	,255	1	,613	3,378	,030	380,23 9
		Kinship_n_clos e	-,136	,427	,102	1	,750	,873	,378	2,016

		Friends_outdeg	,189	,427	,197	1	,658	1,208	,523	2,791
		ree								
		Constant	2,968	7,404	,161	1	,689	19,450		
lowland	Step	Age	,014	,012	1,217	1	,270	1,014	,990	1,038
	1 ^a	log_wealth	-,081	,302	,073	1	,788	,922	,510	1,666
		Kinship_n_clos	-,280	,115	5,911	1	,015	,756	,603	,947
		е								
		Friends_outdeg	,045	,134	,113	1	,737	1,046	,804	1,360
		ree								
		Constant	1,232	1,208	1,040	1	,308	3,428		

a. Variable(s) entered on step 1: Age, log_wealth, Kinship_n_close, Friends_outdegree.

Appendix 3

Assumption 1: Independent observations

The data used within the analysis was not independently observed. The research design was originally for network analysis. Therefore this assumptions has clearly been violated. In the method and discussion paragraphs I have gone more in depth about the implications.

Assumption 2: Normal distribution of residuals

The dependent generosity is a continues variable so my first idea was to do a normal linear regression. However, it became clear that the residuals of generosity were not normally distributed. This can be seen in the histogram of the standardized residuals and the normal P-P Plot below. I decided to perform a binary logistic regression and dichotomized the variable for generosity (see appendix 1)

```
REGRESSION
/MISSING LISTWISE
/STATISTICS COEFF OUTS R ANOVA CHANGE ZPP
/CRITERIA=PIN(.05) POUT(.10)
/NOORIGIN
/DEPENDENT Generosity
/METHOD=ENTER Sex_bi Age Kinship_n_close log_wealth Friends_outdegree
/PARTIALPLOT ALL
/RESIDUALS HISTOGRAM(ZRESID) NORMPROB(ZRESID).
```

Histogram Dependent Variable: Generosity Hean = 1,80E-15 Std. Dev. = 0,994 N = 392

Regression Standardized Residual

Assumption 3: Linear relationship

One of the assumption within a logistical regression is that there is a linear relationship with the logodd transformed dependent. The relationship between generosity and wealth is not linear but logistic due to the highly skewed distribution of wealth. This can be seen when comparing the scatterplots of hh_wealth with generosity and log_wealth with generosity. That is why the natural log function of wealth was used in the analysis (see appendix 1).

```
GRAPH
   /SCATTERPLOT(BIVAR)=hh_wealth WITH Generosity
   /MISSING=LISTWISE.
GRAPH
   /SCATTERPLOT(BIVAR)=log_wealth WITH Generosity
   /MISSING=LISTWISE.
```


log_wealth

Multicollinearity

No extreme high values of multicollinearity were found in the model.

Syntax

```
REGRESSION
/MISSING LISTWISE
/STATISTICS COLLIN TOL ZPP
/CRITERIA=PIN(.05) POUT(.10)
/NOORIGIN
/DEPENDENT Generosity_01
/METHOD=ENTER Sex_bi Age Kinship_n_close log_wealth Friends_outdegree coastal
lowland highland
    altiplano.
```

		C	Correlations	Collinearity Statistics		
Model		Zero-order	Partial	Part	Tolerance	VIF
1	Sex_bi	-,087	-,083	-,081	,986	1,014
	Age	-,087	-,059	-,058	,950	1,052
	Kinship_n_close	,080,	,051	,050	,936	1,068
	log_wealth	,041	,004	,004	,902	1,109
	Friends_outdegree	-,028	-,004	-,004	,864	1,157
	coastal	,080,	,121	,119	,744	1,344
	highland	,088	,115	,113	,754	1,326
	altiplano	,032	,079	,078	,596	1,677

Coefficients^a

a. Dependent Variable: Generosity_01

Outliers and influential points

I took a look at potential outliers and influential points. I saved the residuals, cook distance, leverage and DFBETA values. Then I looked at the descriptives which values were extreme and discarded the DFBETA's due to them being relatively low. Then I looked at the most extreme values for the cook distance, leverage and residuals, and I plotted the leverage with the cook distance. Finally I run the analysis again, which resulted in no major differences.

LOGISTIC REGRESSION VARIABLES Generosity 01 /METHOD=ENTER Sex bi Age /METHOD=ENTER Sex bi Age log wealth /METHOD=ENTER Sex bi Age log wealth Kinship n close /METHOD=ENTER Sex bi Age log wealth Friends outdegree /METHOD=ENTER Sex_bi Age log_wealth Kinship_n_close Friends_outdegree /SAVE=COOK LEVER DFBETA ZRESID DEV /CLASSPLOT /PRINT=GOODFIT CORR CI(95) /CRITERIA=PIN(0.05) POUT(0.10) ITERATE(20) CUT(0.5). DESCRIPTIVES VARIABLES=COO 1 LEV 1 ZRE 1 DEV 1 DFB0 1 DFB1 1 DFB2 1 DFB3 1 DFB4 1 DFB5 1 /STATISTICS=MEAN STDDEV MIN MAX. GRAPH /SCATTERPLOT(BIVAR)=LEV 1 WITH COO 1 BY V1 (IDENTIFY) /MISSING=LISTWISE. RECODE obs (ELSE=Copy) INTO obs2. EXECUTE. *Manually recoded values VI = 36, 47, 52, 58, 72, 141, 161, 197, 200, 223, 227, 308, 374, 425 to 0. COMPUTE filter_\$=(obs2 = 1). VARIABLE LABELS filter_\$ 'obs2 = 1 (FILTER)'. VALUE LABELS filter \$ 0 'Not Selected' 1 'Selected'. FORMATS filter \$ (f1.0). FILTER BY filter \$. EXECUTE. LOGISTIC REGRESSION VARIABLES Generosity 01 /METHOD=ENTER Sex bi Age /METHOD=ENTER Sex bi Age log wealth /METHOD=ENTER Sex bi Age log wealth Kinship n close /METHOD=ENTER Sex bi Age log wealth Friends outdegree /METHOD=ENTER Sex bi Age log wealth Kinship n close Friends outdegree /PRINT=GOODFIT CORR CI(95) /CRITERIA=PIN(0.05) POUT(0.10) ITERATE(20) CUT(0.5). FILTER OFF. USE ALL. EXECUTE.

	Dest		1131163		
	Ν	Minimum	Maximum	Mean	Std. Deviation
COO_1 Analog of Cook's	392	,00050	,26424	,0146412	,03519198
influence statistics					
LEV_1 Leverage value	392	,00514	,07171	,0153061	,01044627
ZRE_1 Normalized residual	392	-3,73480	,64971	,0020707	,99163345
DEV_1 Deviance value	392	-2,32578	,83923	,1864029	,88398081
DFB0_1 DFBETA for	392	-,43586	,19766	-,0000026	,05132275
constant					
DFB1_1 DFBETA for Sex_bi	392	-,02968	,06723	,0000016	,01602332
DFB2_1 DFBETA for Age	392	-,00229	,00168	-,0000001	,00042027

Descriptive Statistics

DFB3_1 DFBETA for	392	-,03644	,09960	-,0000001	,01186861
log_wealth					
DFB4_1 DFBETA for	392	-,02923	,00762	,0000006	,00293607
Kinship_n_close					
DFB5_1 DFBETA for	392	-,03594	,01065	,0000052	,00419941
Friends_outdegree					
Valid N (listwise)	392				

🔗 V1	🖋 COO_1		
374	,26424	🛷 V1	🖋 LEV_1
72	,24556	58	,07171
161	,23201	36	,06725
52	,19841	308	,06034
223	,17184	47	,05529
142	,16870	200	,05407
197	,15502	72	,05037
194	,13957	140	,04986
136	,13408	52	,04940
285	,12398	178	,04926
425	,11864	142	,04915
34	,10876	203	,04879
88	,10863	82	,04672
28	,10762	187	,04520
🛷 V1	SRE_1		
374	-3,73480		
136	-3,36793		
285	-3,24675		
194	-3,23228		
128	-2,98020		
328	-2,93838		
161	-2,91788		
9	-2,90954		
239	-2,81430		
34	-2,79351		
363	-2,66649		
351	-2,66091		
184	-2,62698		
139	-2,59851		
359	-2,54602		
188	-2,53863		
240	-2,53585		
248	-2,53316		
230	-2,50105		

Block 5: Method = Enter

Omnibus Tests of Model Coefficients

		Chi-square	df	Sig.
Step 1	Model	9,304	5	,098

Model Summary

		Cox & Snell R	Nagelkerke R
Step	-2 Log likelihood	Square	Square
1	282,272ª	,024	,045

a. Estimation terminated at iteration number 5 because parameter estimates changed by less than ,001.

Hosmer and Lemeshow Test

Step	Chi-square	df	Sig.
1	1,003	8	,998

Classification Table^a

	-	Classific		<i>;</i>			
			Predicted				
			Genero	osity_01	Percentage		
	Observed		,00	1,00	Correct		
Step 1	Generosity_01	,00	0	49	,0		
		1,00	0	329	100,0		
	Overall Percentag	ge			87,0		

a. The cut value is ,500

		,	Variable	es in the	Equation	on			
								95% (C.I.for
								EXF	Р(В)
		В	S.E.	Wald	df	Sig.	Exp(B)	Lower	Upper
Step 1 ^a	Sex_bi	-,542	,334	2,625	1	,105	,582	,302	1,120
	Age	-,013	,009	2,010	1	,156	,987	,970	1,005
	log_wealth	-,257	,313	,676	1	,411	,773	,419	1,427
	Kinship_n_close	,150	,079	3,613	1	,057	1,162	,995	1,357
	Friends_outdegr	-,001	,099	,000	1	,996	,999	,822	1,215
	ee								
	Constant	3,504	1,303	7,229	1	,007	33,257		

a. Variable(s) entered on step 1: Sex_bi, Age, log_wealth, Kinship_n_close, Friends_outdegree.