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Introduction  

 Human memory is a process of acquiring, storing, updating, and ensuring that 

information remains consistent with existing memory storage. It is considered one of the most 

essential skills in human cognition (Baddeley, 1993). This skill set allows humans to succeed in 

even the most basic daily life tasks, such as grocery shopping, and perform higher functions, 

such as communicating with each other, making sense of their past, and planning their future. 

The architecture of human memory has been discussed since the very beginning of the 

science of psychology, even before it was considered a legitimate scientific discipline (Roediger 

& Yamashiro, 2019). Towards the end of the 19th century, the concept of remembering and 

forgetting was evaluated in an influential book by William James (1890). He distinguished 

memory systems into two categories based on for how long a piece of information can be stored. 

His conceptualization of primary and secondary memory was one of the earliest that suggested 

the distinction between what is now referred to as Long-term memory (LTM) and Short-term 

memory (STM). 

LTM and STM are mainly different in terms of capacity and the duration of information 

storage (Cowan, 2008). Theoretically, LTM has no limitations, and once the information is 

successfully stored in LTM, it becomes accessible for a lifetime (Eysenck, 2020). Even if a 

memorandum is never retrieved after it is initially coded to LTM, it is still considered accessible. 

This long-term memory property allows humans to travel virtual time (Tulving, 1979) and to 

wander around in their own past.  

Corresponding to James' primary memory concept, STM is responsible for retaining 

recently perceived information. Without rehearsal, the information in the short-term memory is 

susceptible to rapid decay. Miller (1956) suggested a limit for short-term memory capacity. He 



concluded that the limit of STM was 7 ± 2 items. He named his finding “Magical number 7 ± 2”. 

What was magical about this number is, based on his findings, that this limit was applicable 

across different paradigms, such as remembering digits, letters, words, or other discrete units of 

information. Cowan discussed the capacity of STM being 7 ± 2 (Cowan, 2001). He argued that 

strategies, such as chunking –grouping related information to remember them easily– might have 

influenced Miller’s findings. He sought to find the pure capacity of STM; hence, his tasks were 

designed to prevent participants from using those strategies. Cowan’s findings, which suggested 

a lower capacity limit of around four information bits, led the literature to re-evaluate the 

question of STM capacity (Cowan, 2001; 2004) 

Regardless of its exact size, it was widely accepted that STM, as measured, has a limited 

capacity. This recognition of STM's limited capacity raised significant questions about the 

adequacy of existing memory models. Baddeley and Hitch (1974) proposed a model that would 

fill the gap in the current memory models. Early models of STM mostly conceptualized it as a 

passive storage system, where information was temporarily held without significant change and 

which was inadequate for explaining complex cognitive tasks requiring active manipulation of 

information (Miller, 1956; Atkinson & Shiffrin, 1968). Cognitive tasks often require not only the 

storage of information but also the active manipulation and sequencing of information in a 

hierarchical order. An example of active manipulation in STM is making a fried lion’s mane 

sandwich. One must remember the ingredients (bread, cheese, Lion’s Mane Mushroom, tomato, 

and mustard) and the order of assembly. Preparing the sandwich involves recalling and using this 

information step-by-step, such as spreading mustard before adding the mushroom. Such a task 

illustrates the necessity for a memory system that not only stores information but also actively 

manipulates it, highlighting the limitations of traditional STM models. In response, Baddeley 



proposed working memory (WM), a more active, online, and dynamic model (Baddeley & Hitch, 

1974). 

WM is not an entirely different concept from STM. Fundamentally, they are both 

responsible for retaining information for a short period. However, using the concepts in memory 

literature is flexible (Aben et al., 2012). It would be appropriate to make the following 

distinction: WM is an active system and, hence, is responsible for holding and manipulating 

stored information. In contrast, STM is conceptualized as solely responsible for storing 

information for a limited time and recall when needed.  

The working memory system can be considered a processor responsible for adjusting 

information flow across memory storages. In the sandwich example above, WM enabled 

retrieval of the recipe from LTM while keeping the order of ingredients in the focus of attention, 

making it possible to execute goal-directed behavior. The most dominant model comes from 

Baddeley’s research (Baddeley, 1992; Baddeley & Hitch, 1974), which describes WM as a 

system that includes multiple storage sub-systems specialized for different types of information. 

The main sub-systems in the model are the phonological loop, which holds auditory input, and 

the visuospatial sketchpad, which holds visual input. The model also contains the central 

executive responsible for operating the sub-systems.  

 Research has focused on neural regions that enable working memory functions. The 

prefrontal cortex (PFC) is the human brain region that is formed at the latest (Fuster, 2015) and is 

the center for the most developed and flexible cognitive skills specific to the human mind, such 

as abstract thinking, communication, decision-making, planning goal-directed behavior and top-

down processing (Funahashi, 2022). 



 Long-accumulating data showed strong, persistent neural activity in the lateral PFC, 

dorsolateral parts (dlPFC), during the delay period of WM tasks. For an extended period, it has 

been assumed that maintenance in WM relies on persistent neural firing (Goldman-Rakic, 1995; 

Funahashi, 2017; Constantinidis et al., 2018), which means that after the initial encoding of the 

stimulus, neural firing is continuous keeping the representations of information active during the 

retention period, even when the stimulus is no longer present in the environment. The persistent 

activity requirement seems reasonable when looking at working memory’s behavioral outcomes, 

such as using, transferring, manipulating, or combining newly encoded information with 

previously stored data after a brief retention period.  

In one of the pioneer studies on short-term maintenance, Fuster & Alexander (1971) 

found that specific neurons of primates’ PFC exhibited sustained firing during the maintenance 

and showed spiking during memory delays of WM tasks. This persistent activity was not 

dependent on external stimuli, suggesting that these neurons were actively maintaining 

information without sensory input. Moreover, sustained neuronal activity correlated with 

subjects’ task performance, a simple delayed-response task. Furthermore, subjects with PFC 

lesions showed decreased WM performance (Bauer & Fuster, 1976). The implications of this 

research were influential on neuronal correlates of short-term maintenance. The results were 

considered direct evidence of persistent neural activity on STM and influenced the current 

understanding of the neural basis of transient memory retention.  

  In the subsequent years, persistent neural activity became synonymous with WM 

maintenance. However, some researchers have scrutinized the assumed relationship between 

persistent neural activity and WM maintenance (Sreenivasan et al., 2014; Stokes, 2015). The 

questions of whether persistent activity in the PFC is exclusively related to WM maintenance, 



whether persistent spiking in the PFC is necessary for successful goal-directed behavior, and 

whether the observed persistent activity during WM maintenance is merely a data interpretation 

have been discussed. Lundqvist, Herman, and Miller (2016) propose that persistent activity 

observed in working memory tasks may result from averaging the activity of neural populations, 

with individual neurons exhibiting more dynamic, transient bursts of activity rather than 

continuous firing. In addition, they proposed a more dynamic and variable model instead of the 

current persistent-activity model. They hypothesized that WM representations could be 

maintained by transient bursts of activity, which would be more energy-efficient than continuous 

spiking (persistent spikes imply elevated energy consumption).   

Moreover, they stated that the so-called activity-silent state is not only more economical 

but also less labile in response to ongoing sensory input during maintenance. In other words, it 

may be more resilient to interference (Kozachkov et al., 2022). Sudden bursts —not persistent but 

sparse spiking1— allow groups of neurons involved in the relevant WM task to store information 

by protecting it from ongoing sensory inputs. This protection enables the information to be read 

out more accurately and reliably, which is critical for guiding behavior and task performance. 

 A synaptic theory has been put forward to underlie the functionally passive maintenance 

of working memory, which suggests that information is stored during the maintenance process of 

working memory through transient changes in the strength of synaptic connections between 

neurons. These changes occur due to the involved neurons' synaptic plasticity (SP). SP refers to 

the strengthening or weakening of synapses, the connections between neurons, due to the recent 

activity occurring on neurons (Citri & Malenka, 2008). The type of plasticity that might be 

supporting transient WM maintenance is known as short-term synaptic plasticity (STSP), 

 
1 In this context, spiking has been used to refer to the bursts observed in neuroimaging data, which appear as jumps 

relative to the baseline.  



namely, temporary changes in the efficiency of synaptic transmission. These changes could either 

enhance (short-term facilitation) or reduce (short-term depression) the strength of synapses for a 

brief period (Zucker & Regehr, 2002; Stevens & Wang, 1995). It has been previously shown that 

synapses in WM-related neuron populations might be facilitated due to activity-induced residual 

calcium (Barak & Tsodyks, 2007).  

When a neuron fires, calcium ions enter the presynaptic terminal, a specialized region in 

the neuron’s axon filled with vesicles carrying neurotransmitters. If the neuron fires again before 

calcium levels return to baseline, the increased calcium concentration can enhance 

neurotransmitter release, thereby strengthening synaptic transmission. This process is known as 

short-term facilitation. In the context of WM, this synaptic enhancement by residual calcium acts 

as a temporary trace of the stored information. This 'synaptic trace' means that persistent spiking 

is unnecessary, as the elevated calcium levels in the presynaptic region maintain the strengthened 

synaptic connection longer, preserving the information in WM. 

 Wolf et al. (2017) employed an innovative method in their study. The researchers 

employed a method they likened to sonar2, in which they introduced a stimulus to probe the 

activity-silent states in WM. They used an experimental flow shown in Figure 1 and presented 

participants with task-neutral and high-contrast stimuli during the WM maintenance period. The 

aim was to decode activity-silent information from the EEG data after participants were exposed 

to the impulse. Because this information was stored in an 'activity-silent' manner, it was expected 

to be undetectable in the EEG data without external stimulation. As proof of this, the researchers 

reported that decoding accuracy quickly dropped to chance levels after the memory items were 

 
2 Active sonar works by emitting a sound pulse into the water. When this pulse hits an object, it bounces back as an 

echo. The sonar transducer then receives this echo and measures the time taken for the pulse to return, which helps 

determine the object's distance and position. Animated example of how Sonar systems work 

https://www.youtube.com/watch?v=p3skjxnbbeQ


presented, indicating a lack of detectable activity. This suggests that the information is 

maintained in an activity-quiescent state between the presentation of the memory items and the 

probe. 

Furthermore, they demonstrated that the orientation of the cued memory item could be 

decoded from the EEG data during maintenance in response to the impulse stimulus (Wolf et al., 

2019; Pals et al., 2020). Consequently, they introduced the idea that it was possible to decode the 

content stored in an activity-quiescent fashion by pulsing WM networks through a task-neutral 

high-contrast stimulus. These findings suggest that WM networks can flexibly shift the 

functional status of retained information between active and passive states, depending on its 

relevance to the ongoing task, thereby optimizing cognitive resources. 

 

 

 

Pals et al. (2020) used an artificial neural network model to simulate activity-silent 

processes. A spiking-neuron model of WM was used to assess how short-term synaptic plasticity 

Figure 1 

 

Main experiment flow Wolf et al., 2017 



contributes to information maintenance. The main objective was to build a computational model 

of WM that could represent the experimental findings of silent state working memories.  

Additionally, short-term synaptic plasticity was also considered while modeling the 

activity-silent WM states. This was achieved by incorporating the calcium kinetics mechanism 

proposed by Mongillo et al. (2008). By incorporating this mechanism, their model represented 

the temporary changes in synaptic strength due to neuronal activity, allowing it to account for 

both active and activity-silent phases of working memory. Their model successfully reproduced 

the dynamics of STSP in a biologically realistic manner. This allowed the model to simulate how 

transient synaptic changes could maintain information in working memory without continuous 

neuronal firing. In line with the previous understanding, Mongillo’s model suggests that storing 

information in short-term synaptic changes rather than persistently firing neuronal 

representations makes it less dependent on strong interactions between neurons, making it more 

resistant to distraction and interference. 

While computational models provide theoretical support, empirical evidence from 

transcranial magnetic stimulation (TMS) studies further substantiates the role of STSP in 

activity-silent WM maintenance. Rose et al. (2016) demonstrated that latent working memory 

traces, which are not maintained by continuous neural activity, can be reactivated using TMS. 

Participants were asked to hold two items in working memory. During a delay period, the 

researchers applied TMS to the brain region associated with WM maintenance (typically the 

PFC) to see if it would reactivate the latent memory trace. They found that TMS pulses could 

reactivate the latent memory trace, causing the neural activity associated with the previously 

latent item to become detectable again. This indicated that the memory trace was not lost but 

remained in a 'silent' state, capable of being reactivated. 



Muhle-Karbe et al.’s (2021) study provides valuable insights into how information might 

be stored in an activity-silent manner in an experimental setting. In their study, a delayed-

response task was employed where participants were asked to hold two stimuli in mind. After 

presenting the stimuli, a cue indicated which stimulus would be needed shortly afterward, while 

the other stimulus would be required later in the experiment. The study found that the cued 

memory item was maintained in an active state, whereas the uncued item was held in an activity-

silent state. This suggests that the immediately-needed memory item remains within the focus of 

attention while the item required later is passively stored. This finding supports the idea that 

working memory, which guides behavior, may operate hierarchically, prioritizing information 

based on its immediate relevance. 

It is reasonable to suggest that information encoded in an activity-silent state within 

working memory (WM) populations is less metabolically costly as action potentials account for 

around 47% of overall ATP usage, and while sustained-activity stored memories are more 

engaged with sensory processing (Mallett & Lewis-Peacock, 2018), activity-silent memories, 

stored via short-term synaptic plasticity (STSP), do not have this disadvantage. Neural firing is 

dynamic and prone to interference, whereas synaptic storage is more stable and requires less 

continual updating (Kozachkov et al., 2022). As a result, activity-silent memories are likely to be 

better protected from ongoing sensory input and both task-relevant and task-irrelevant 

interference. Additionally, this information may be preserved and retrieved more accurately 

when needed (Atwell & Laughlin, 2001; Stokes, 2015; Oberaur & Greve, 2022; Buschman, 

2021; Kilpatrick, 2017; Stokes et al., 2020). 

 From this perspective, we conducted two experiments in the current study to investigate 

the role of neural activity-states in WM and their resilience against interference. Activity-silent 



states refer to a form of memory storage where information is maintained through changes in 

synaptic strength rather than persistent neural activity. We hypothesized that these states –

corresponding to the functionally passive (uncued-unprioritized) items in our task—would be 

more resilient to interference than the functionally active (cued-prioritized) items stored through 

ongoing neuronal firing. The experiments employed a 2-item delayed response task, 

manipulating the similarity between the interference task and the memory items to assess the 

effects of interference. By cueing which item would be probed first, we induced a functionally 

active state for that item, whereas the second unprioritized item remained in an activity-silent 

state. Through these experiments, we aim to clarify how neurally active and activity-silent states 

in WM correspond to the functionally active and passive items in our design and their 

vulnerability or immunity to interference 

 

Method 

Participants 

Participants were recruited through the University of Groningen SONA participant pool 

website. Some participants joined the study in exchange for SONA credits, while others received 

a monetary incentive (€12). A total of 52 participants were involved in Experiment 1. The 

participants’ ages ranged from 18 to 42 years (M = 21.9, SD = 4.75). Of these participants, 34 

(65.38%) were female. The second experiment involved 44 participants aged 18 to 35 (M = 22.2, 

SD = 3.71), and 34 (77.3 %) were female. The study was conducted following the Declaration of 

Helsinki (2008). It was approved by the Ethical Committee of the Faculty of Behavioral and 

Social Sciences at the University of Groningen (approval number PSY-2122-S-0206). All 

participants reported normal or corrected-to-normal vision. 



 

Apparatus and Stimuli  

OpenSesame v3.3.14, an open-access experimental software, was used for designing and 

executing this experiment (Mathot et al., 2012). The experiment was conducted on a 19-inch 

CRT monitor with a resolution of 1280 x 1024 pixels and a refresh rate of 100 Hz. Participants 

completed the experiment in a sound- and light-isolated booth within the laboratory, with dim 

lighting controlled by the researcher. The entire experiment was presented on a dark gray 

background (RGB: 128, HEX: #808080). The Gabor patches were set to 80% contrast relative to 

the background, with a spatial frequency of 0.05. The colors of the stimuli were selected from the 

CIE Lab color space (*L = 70, a = 0, b = 0, radius = 38). 

Procedure 

General Procedure  

Participants took part in the experiment at the Behavioral and Social Sciences (BSS) 

faculty building of the University of Groningen. They arrived at the laboratory on the date and 

time they selected through the participation platform and were welcomed by the researcher. 

Participants were taken to sound-attenuated cabinets to begin the experiment. After filling out the 

consent form, they were given a written document explaining the experiment. Once they had 

read the document, the researcher briefly explained the experimental flow and answered their 

questions. The first two blocks were practice blocks, followed by 14 experimental blocks. In 

total, they completed 384 experimental trials in 16 blocks, lasting approximately 90 minutes. 

Participants received feedback after each trial in the practice phase but only after each block in 

the experimental blocks. Participants had the right to withdraw from the experiment at any stage. 



Additionally, they were allowed to take a break between blocks. All manipulations detailed 

below were randomized and counterbalanced. 

Experiment 1  

Experiment 1 (Figure 2A) aimed to test whether memory items in a prioritized (cued) 

state are more susceptible to featural interference compared to items in a deprioritized (uncued) 

state. The experiment was structured into 16 blocks, each beginning with a block cue that 

indicated the type of memory item (colored circle or Gabor patch) that would be probed first. 

Once the block cue was given, the cued type of item was consistently probed first throughout 

that block, making it functionally active. 

At the beginning of each block, participants received a block cue for 1000 milliseconds. 

Following the cue, an initial fixation dot between 300 and 500 milliseconds appeared. Then, the 

first memory item, either a colored circle or a Gabor patch, was presented randomly for 200 

milliseconds at the center of the screen. Afterward, a fixation dot appeared and lasted 900 

milliseconds, and then the second memory item of the opposite type from the first was presented 

for another 200 milliseconds. 

After two memory items were presented, participants performed an interference task, 

which could last a maximum of 2000 milliseconds. During this task, participants were required 

to determine whether the two items on the array were the same or different or, in the baseline 

condition, participants did nothing; they waited for the probe phase. If the interference task 

involved colored circles, participants judged whether the two circles were the same color. If the 

task involved Gabor patches, participants determined whether the orientation of the two patches 

was the same. The interference trials were counterbalanced to ensure equal representation of 

'same' and 'different' conditions, and the order of presentation was randomized across trials. 



Additionally, the colors and orientations of the interference stimuli were randomly selected. 

Interference stimuli were presented on a horizontal axis, with one stimulus positioned at x = -244 

pixels (left side of the screen) and the other at x = 244 pixels (right side of the screen), both 

aligned vertically at y = 0. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

At the end of each trial, participants responded to the memory items by selecting the 

correct color from a color wheel for the color memory item or by rotating a Gabor patch to match 

the correct orientation for the orientation memory item. 

Figure 2  

 
Overview of the structure of Experiments 1 and 2 

Note. Figure A shows a typical trial from the experiment one. Interference task was also included an orientation and baseline conditions. Figure A depicts 

a “match trial” as the type of the memory item and the interference task is the same both being colored circles. Figure B shows a typical trial from the 

experiment two. Interference task was also included a “low spatial frequency” and baseline conditions. Again, Figure B depicts a match trial as the 

location of the memory item and interference task both located in the same spatial location. 



The interference manipulation was based on whether, in each trial, the feature of the 

prioritized item matched the feature involved in the interference task. A trial was considered an 

“interference trial” if there was a match due to the potential for feature-based interference. If 

there was no match, it was classified as a no-interference trial. The same logic applies to the 

deprioritized item. 

Experiment 2 

Experiment 2 aimed to measure the potential interference effects of the similarity 

between the spatial location of the cued memory item and the interference task. The research 

question in Experiment 2 was identical to that in Experiment 1; however, in Experiment 2, the 

effects of location-based interference were investigated instead of feature-based interference.  

At the beginning of each block, participants received a block cue for 1000 milliseconds, 

which specified whether the item on the left or right would be prioritized during the probe phase 

(Figure 2b). Following this cue, an initial fixation dot between 300-500 milliseconds appeared. 

Then the first memory item, either a colored circle or a Gabor patch, was presented laterally at an 

equal distance of 5.93 degrees of visual angle from the fixation dot. Each memory item was 

presented with a black-and-white noise patch in the opposite, empty location. Afterward, the 

second memory item of the opposite type from the first was presented with a noise patch for 

another 200 milliseconds in the same fashion.  

After the memory items were presented, participants performed the interference task, 

which could again last a maximum of 2000 milliseconds. For the interference task, in one 

location, participants saw a black-and-white ‘bull’s eye’ stimulus, and the task was to judge if the 

spatial frequency of this item was high or low. The spatial frequencies used were 0.5 (low spatial 

frequency) and 1.4 (high spatial frequency). The ‘empty’ location was once again filled with a 



noise patch. At the end of each trial, participants were required to respond to both memory items 

in the order specified by the block cue. The response involved adjusting a Gabor patch to match 

the remembered orientation and selecting the right hue from the color wheel to match the 

remembered color.  

Analysis 

We identified and excluded outliers using the interquartile (IQR) rule, defining outliers as 

subjects whose average scores on the first and second memory items fell 1.5 times the 

interquartile range below the 25th percentile or above the 75th percentile (Exp1: N=6, Exp2: 

N=2). 

The memory items presented in the experiment were probed using a 360-degree color 

wheel for the color circle and a similarly manipulated 360-degree Gabor patch. Participants' 

responses were converted into absolute errors in degrees. The difference between the degree of 

the presented item (color circle) on the color wheel and the degree selected by the participant 

during the probe phase was defined as the absolute error. The same procedure was applied to the 

direction of the Gabor patch. The difference between the presented item's direction on the Gabor 

patch and the direction selected by the participant during the probe phase was also calculated as 

the absolute error. 

The absolute errors for each trial were calculated based on whether the items were cued 

and the outcomes of match and non-match conditions in the interference task. This calculation 

assessed the differences in absolute error across these conditions. Paired samples Bayesian t-tests 

were employed to compare the performance of cued and uncued items based on their match with 

the interference task.  



 In the current experiment, the two-component mixture model by Zhang & Luck 

(2008) was fitted independently to cued and uncued items to compare the items' memory 

characteristics and examine the nature of the effects of interference on memory items more 

deeply. The model has two assumptions, with resultant parameters: In a continuous memory task, 

the participant's response is influenced by how well the memory item aligns with the 

representation encoded in their working memory. If the memory item is closely aligned with this 

representation, the participant's response will be near the item's position on the color wheel, 

which leads to higher precision (κ) values. However, if the working memory representation is 

weak, noisy, or completely lost, the response will involve random guessing, meaning the 

participant's selection could fall at any point on the color wheel, increasing the uniformity (Pμ) 

values. 

The pre-processing, model fitting of the mixture model (Grange & Moore, 2022; version: 

1.2.1, R Mixtur Package), and the creation of plots were performed using the RStudio software 

(RStudio Team, 2024, version 2024.4.2.764). 

Results  

Experiment 1  

 In Experiment 1, it was examined whether feature-based interference affected the 

performance of functionally active and passive items equally in working memory. Table 1 shows 

the average absolute error of all conditions. A binomial test indicated that participants performed 

significantly above chance level in the interference task, both in the color and orientation, with a 

success rate of 88.66% sd = 7.59% (95% CI [88.25%, 100%]), p <.001. Absolute error rates of 

cued items ( = 17.853°, sd = 4.73°) were significantly lower than uncued items ( = 21.638°, sd 



= 6.191 (tpaired , BF10 = >100 ) . Note that lower absolute values indicate higher memory 

performance.  

 

 

 

 

 

 

 

 

  

 

 

 

 

 

Table 1 

  

Descriptive statistics of Exp 1. Absolute error 

Item Type Mean (SD) Range 

Cued Items   

High Interference  20.8° (4.89)                   10.5° - 28.9° 

Low Interference  17.8° (3.90)                   11.2° -25.4 ° 

No Interference  14.84°(3.11)                   9.17° - 22.8° 

Uncued Items   

High Interference  24.7° (6.71)                   12.8° - 46.93° 

Low Interference  21.41°(5.39)                   12.1° - 35° 

No Interference 18.72°(4.88)                   10.6° - 29.6° 

Cued Items Overall 17.83°(4.73)                   9.1° - 28.9° 

Uncued Items Overall 21.63°(6.19)                   10.6° - 46.9° 

Figure 3 

 

Raincloud plots of the interference conditions  

 



When the feature of the interference task matched the feature of the cued items, the errors 

for the cued items were higher ( = 20.8°, sd = 4.89°), compared to when the feature did not 

match ( = 17.8°, sd = 3.90°),(tpaired , BF10 = >100 ). However, the error rates were even lower in 

the baseline condition, where there was no interference task at all, compared to non-match trials 

( = 14.84°, sd = 3.11°), (tpaired , BF10 = >100 ). The same pattern was observed for uncued items 

as well. Like cued items, uncued items were also affected by interference, and the effect of 

interference was substantial when the feature of the interference task matched the uncued item 

(Table 2). 

 

Table 2  

Bayesian Paired Samples T-Test of Absolute error 

Measure 1   Measure 2 BF₁₀ error % 

Cued Items          

High Interference  -  Low Interference  37898.634  1.179×10-10   

Low Interference  -  No  Interference   1.133×10+8   7.866×10-14   

Uncued Items          

High Interference  -  Low Interference  3022.185  1.701×10-6   

Low Interference  -  No ınerference  158067.907  3.735×10-11   

HI Cued Item (z-

scored).  
 -  HI Uncued Item (z-scored)  0.162  0.060  

Note. HI.: High Interference - Match Conditions  

  

To test the study's central hypothesis, the effect of the interference task on items was 

measured by comparing the memory performance of cued items with that of uncued items. The 

scores were standardized to control for the inherent performance advantage of cued items by 

converting them into z-scores; the higher scores of cued items were controlled for via 



standardization. This comparison showed no difference between the z-scores of the prioritized 

and deprioritized items (tpaired , BF10 = 0.162).  

As an exploratory analysis, the cued and uncued items' scores were combined across both 

interference conditions (match and non-match), and the difference between these combined 

scores and the related baseline scores was calculated. A Bayesian paired t-test conducted on these 

performance difference scores revealed that the difference was not statistically significant (tpaired , 

BF10 = 0.168). In other words, this result demonstrated that cued and uncued items were 

similarly affected by interference, taking their baseline scores into account. 

As discussed above, Zhang and Luck's (2008) two-component model was applied to the 

data to understand better how and to what extent interference affected the memory items’ fate. 

Independent model fitting was conducted separately for cued and uncued items. Table 3 shows 

the average model parameters for cued and uncued items.  

Table 3 

A- Mean values of two component model  - Cued Items 

Item Type Mean (SD) 

Memory Precision – (k)  

High interference 9.051 (4.71) 

Low interference 10.365 (3.87) 

Baseline 12.181 (3.93) 

Guess Rate  –  (u)  

High interference 0.072  (0.048) 

Low interference 0.051 (0.047) 

Baseline 0.024  (0.383) 

 

a - Mean values of two component model  - Uncued Items 

Item Type Mean (SD) 

Memory Precision – (k)  

High interference 7.439 (2.96) 

Low interference 8.658 (2.94) 

Baseline 9.694 (3.93) 



Item Type Mean (SD) 

Guess Rate  –  (u)  

High interference 0.109 (0.083) 

Low interference 0.085 (0.071) 

Baseline 0.056  (0.60) 

 

The Bayesian Repeated Measures ANOVA revealed strong evidence that both 

interference condition and item type (cued vs. uncued) significantly impacted memory precision. 

The effect of interference conditions, with BF10 = >100, indicates that memory performance 

varies significantly across high interference, low interference, and baseline conditions. A post 

hoc analysis further confirmed significant differences between all interference levels, with high 

interference having the most significant impact compared to baseline and low interference. 

For item type, the analysis showed a significant difference between cued and uncued 

items, as indicated by BF10 = >100 with cued items consistently showing higher precision. 

However, the interaction effect between item type and interference condition was not supported , 

as indicated by BFM = 0.723, suggesting that both cued and uncued items were similarly affected 

by interference. 

 

Table 4 

 

Bayesian RM Anova for Memory Precision (k) parameter 

Models P(M) P(M|data) BFM  BF10  
error 

% 

Null model (incl. subject and 

random slopes) 
 0.20

0 
 1.646×10-

11  
 6.583×10-

11  
 1.000    

Item type + Interference Condition  0.20

0 
 0.847  22.103  5.145×10+1

0  
 1.252  

Item type + Interference Condition 

+ Item type ✻  Interference 

Condition 

 0.20

0 
 0.153  0.723  9.296×10+9   3.976  

Interference Condition  0.20

0 
 2.404×10-

4  
 9.620×10-

4  
 1.461×10+7   1.441  



Bayesian RM Anova for Memory Precision (k) parameter 

Models P(M) P(M|data) BFM  BF10  
error 

% 

Item type  0.20

0 
 4.315×10-

8  
 1.726×10-

7  
 2621.619  1.259  

Note.  All models include subject, and random slopes for all repeated measures factors. 

 

Post Hoc Comparisons - Item type  

    
Prior 

Odds 
 BF10, U  error % 

Cued  Uncued  1.000    318087.626  2.454×10-12   

 

Post Hoc Comparisons - Interference Condition  

    
Prior 

Odds 

Posterior 

Odds 
BF10, U  error % 

High  Low  0.587  67.735  115.314  1.445×10-8   

   Baseline  0.587  1.837×10+7   3.127×10+7   1.821×10-10   

Low  Baseline  0.587  100.615  171.289  9.065×10-9   

Note.  The posterior odds have been corrected for multiple testing by fixing to 0.5 the prior probability that the null hypothesis 

holds across all comparisons (Westfall, Johnson, & Utts, 1997). Individual comparisons are based on the default t-test with a 

Cauchy (0, r = 1/sqrt(2)) prior. The "U" in the Bayes factor denotes that it is uncorrected. 

 

The second Bayesian repeated measures ANOVA (Table 5) revealed a significant 

difference in random guessing rates (Pu) between cued and uncued items. Uncued items 

displayed higher guessing rates than cued items, as indicated by the strong evidence with a BF10 

> 100, suggesting that uncued items are more susceptible to random guessing. 

Additionally, the interference condition substantially impacted guessing rates, with high 

interference leading to significantly higher guessing compared to low interference and baseline 

conditions. The baseline condition showed the lowest guessing rates, implying better memory 

performance when no interference was present. 

 



 

 

 

 

Table 5  

 

Bayesian RM Anova for Random Guess (Pu) parameter 

Models P(M) P(M|data) BFM  BF10  error % 

Null model (incl. subject and 

random slopes) 
 0.200  

1.094×10-

6  
 4.377×10-

6  
 1.000    

Item type + Interference Condition  0.200  0.890  32.351  813216.970  1.783  

Item type + Interference Condition + 

Item type ✻  Interference Condition 
 0.200  0.076  0.327  69024.141  2.307  

Interference Condition  0.200  0.034  0.143  31500.170  1.657  

Item type  0.200  
2.491×10-

5  
 9.963×10-

5  
 22.758  2.104  

Note.  All models include subject, and random slopes for all repeated measures factors. 

 

Post Hoc Comparisons - Item type  

    
Prior 

Odds 
 BF10, U  error % 

Cued  Uncued  1.000    227.067  8.705×10-9   

 

Post Hoc Comparisons - Interference Condition  

    
Prior 

Odds 

Posterior 

Odds 
BF10, U  error % 

High  Low  0.587  12.087  20.577  1.023×10-7   

   Baseline  0.587  110490.039  188099.832  2.126×10-12   

Low  Baseline  0.587  8.525  14.513  1.504×10-7   

Note.  The posterior odds have been corrected for multiple testing by fixing to 0.5 the prior probability that the null hypothesis holds 

across all comparisons (Westfall, Johnson, & Utts, 1997). Individual comparisons are based on the default t-test with a Cauchy (0, r 

= 1/sqrt(2)) prior. The "U" in the Bayes factor denotes that it is uncorrected. 

 

However, there was no evidence of a significant interaction between item type (cued vs. 

uncued) and interference condition (BF10 = 0.327). This means that while both cued and uncued 

items were affected by interference, the magnitude of the effect on random guessing did not 

differ significantly between the two types of items. Both item types experienced increased 



guessing rates with higher interference, but the extent of this impact was similar for both cued 

and uncued items. 

Experiment 2  

 In the second experiment, unlike the first, the effect of the interference task’s similarity in 

terms of spatial location, rather than feature, on both cued and uncued items was examined. 

Table 5 shows the average absolute error rates of all conditions. Absolute error rates of cued 

items ( = 19.36°, sd = 4.31°) were significantly lower than uncued items ( = 21.26°, sd = 3.64 

(tpaired , BF10 = > 100) in match condition. The absolute error rates of baseline condition in cued 

items were lower than those of uncued items (tpaired , BF10 = 21.836). A binomial test indicated 

that participants performed significantly above the chance level in the interference task, with a 

success rate of 95.90% (95% CI [95.64%, 100%]), p < .001. 

Table 6 

Descriptive statistics of Exp 2. Absolute error 

 

Item Type Mean (SD) Range 

Cued Items   

Match  19.90° (4.89) 8.72° - 31.5° 

No Match  20.27° (4.65) 11.27° -29.12 ° 

Baseline  17.90°(4.11) 8.94° - 28.001° 

Uncued Items   

Match 22.07° (4.35) 13.27° - 31.62° 

No Match 22.17°(4.41) 12.04° - 31.15° 

Baseline 18.53°(3.24) 12.60° - 27.23° 

Cued Items Overall 19.36°(4.31) 9.82° - 29.07° 

Uncued Items Overall 21.26°(3.64) 13.34° - 28.41° 

 

For Experiment 2, no performance difference was found between match and no-match 

trials for both cued (tpaired , BF10 = 0.247) and uncued (tpaired , BF10 = 0.173) items. On the other 

hand, a significant performance difference emerged between the baseline condition and the no-

match condition on both item types with a value of BF10 > 100 . This indicates that interference 



was effective for both cued and uncued items, but unlike in Experiment 1, the matching of the 

interference task’s properties with the memory items’ (match trials) did not affect performance.  

  

 

 

 

 

 

 

 

 

 

 

 

In Experiment 2, as in Experiment 1, the performance of cued and uncued items under 

interference was compared. However, since there was no significant difference between the 

match and no-match conditions, the interference could not be classified as high or low. 

Therefore, the match and no-match conditions were combined, and the z-score of this combined 

score was calculated for comparison, instead of comparing the match condition. However, a 

significant difference between z-scored performance of cued and uncued items did not appear. 

The effect of both task specific and task unspecific interference on the probe performance of  

cued and uncued items was similar .  



Table 7  

 

Bayesian Paired Samples T-Test of absolute errors  

Measure 1   Measure 2 BF₁₀ error % 

Cued Items           

Match   -  No Match   0.247  0.046  

No Match  -  Baseline   23495.471  2.189×10-10   

Uncued Items           

Match   -  No Match  0.173  0.053  

No Match  -  Baseline    8004.797  4.405×10-6   

Cross Comparison 

 
         

Z-score Cued Item I   -  Z-Score Uncued Item I  0.169  0.053   

Overall Cued Item  -  Overall Uncued Item   4286.906  2.884×10-6   

Note. I: Interference 

 

The two-component model was fitted to the data from the second experiment. Table 8 

shows the average model parameters for both cued and uncued items. In terms of memory 

precision, no significant differences were found between cued and uncued items (tpaired, BF₁₀ = 

0.681) in the match conditions. Additionally, memory precision in the match and no-match 

conditions was statistically similar for both cued items (tpaired, BF₁₀ = 0.167) and uncued items 

(tpaired, BF₁₀ = 0.403). Likewise, the difference between no-match and baseline conditions was 

minimal, with BF₁₀ values of 1.136 for cued items and 0.177 for uncued items. Thus, overall, 

interference had no significant impact on memory precision for either cued or uncued items. 

However, there was a marginal difference in random guessing between cued and uncued 

items (tpaired, BF₁₀ = 1.510). Notably, this difference also appeared in the baseline condition for 

both item types, suggesting that the observed difference in random guessing was not due to 

interference. 



 

 

Table 8 

A- Mean values of two component model  - Cued Items 

Item Type Mean (SD) 

Memory Precision – (k)  

Match 8.211 (4.173) 

No Match 8.199 (4.050) 

Baseline 9.014 (4.715) 

Guess Rate  –  (u)  

Match 0.054  (0.053) 

No Match 0.056 (0.047) 

Baseline 0.032  (0.47) 

 

B - Mean values of two component model  - Uncued Items 

Item Type Mean (SD) 

Memory Precision – (k)  

Match 7.447 (3.237) 

No Match 8.042 (3.598) 

Baseline 7.919 (3.195) 

Guess Rate  –  (u)  

Match 0.074  (0.058) 

No Match 0.091 (0.073) 

Baseline 0.047  (0.55) 
  

 

Table 9 

 

Bayesian Paired Samples T-Test of model parameters  

Measure 1   Measure 2 BF₁₀ error % 

Precision Cued           

Match  -  No Match  0.167  0.055  

No Match  -  Baseline  1.136  0.022  

Precision Uncued           

Match   -  No Match  0.403  0.038  

No Match  -  Baseline  0.177  0.054  



Bayesian Paired Samples T-Test of model parameters  

Measure 1   Measure 2 BF₁₀ error % 

Random Guess Cued          

Match  -  No Match  0.179  0.054  

No Match  -  Baseline  39.731  0.046  

Random Guess Uncued          

Match  -  No Match  >100  1.187×10-8   

No Match  -  Baseline  >100  3.601×10-9   

Across Item Comparisons          

Match Cued Precision  -  
Match Uncued  

 Precision 
0.681  0.029  

Match Cued Random Guess  -  
Match Uncued  

 Random Guess 
1.510  0.018  

Baseline Cued Random Guess  -  

Baseline 

Uncued  

 Random Guess 

1.490  0.018  

 

 

 

General Discussion 

 Experiment 1 demonstrated that the interference condition affected both cued and uncued 

memory items as expected. Furthermore, the effect of interference varied depending on the 

match with the memory items. As the level of interference increased, its impact grew, leading to 

a decline in performance. This finding aligns with the finding that task-related information 

following target information is more contaminating than task-unrelated information (Kliegl & 

Bauml, 2021). The significant results of the interference task validated that the interference task 

in Experiment 1 was successful.  

 Interference not only increased the absolute error but also systematically affected 

memory precision and random guessing. For both cued and uncued items, memory precision 

varied depending on the level of interference. As the level of interference increased, precision 

decreased, and the rates of random guessing increased. 



Cued items consistently exhibited better memory performance compared to uncued items. 

While the feature-based interference task affected both items, the magnitude of this effect did not 

differ between cued and uncued items. Uncued items did not demonstrate resilience to 

interference.  

In Experiment 2, the interference task affected both cued and uncued items. However, 

this time, the effect did not vary with the level of interference. No significant difference in the 

impact of interference was found between the match condition and the no-match condition. It 

was found that the overlap in spatial location between the interference task and the memory 

items did not produce a significant difference, but the presence of interference task itself did. 

This may suggest that if location is not an inherent part of the task, overlapping locations do not 

interfere with working memory. 

The performance of cued items was higher than uncued items both under interference and 

in the baseline condition. However, memory precision did not differ between cued and uncued 

items. In conditions where interference was present, the precision of both cued and uncued items 

was similar. 

On the other hand, random guessing was higher for uncued items. Although random 

guessing did not vary based on the levels of interference for uncued items, the difference in 

random guessing between cued and uncued items persisted, even though their precision remained 

the same. In Experiment 1, the performance difference between cued and uncued items was 

accompanied by changes in both precision and guessing rates. However, in Experiment 2, the 

performance difference was accompanied only by changes in the guessing rate.  

 

 



Neural correlates of WM 

 There is increasing evidence in the literature that information retention in working 

memory can occur both in active and activity-silent forms (Stokes, 2015; Kozachkov et al., 2022; 

Mongillo et al., 2008). This may depend on the task relevance, relative importance, and other 

characteristics of the stored information. Both types of retention may have their advantages and 

disadvantages. In this study, we tested the resilience of information with the potential for 

activity-silent retention (a potential driven by the item’s task relevance and functional priority 

status) to proactive interference. This resilience could be one of the functional advantages of 

activity-silent retained information as the STSP account of activity-silent states suggests (Stokes, 

2015).  

 In this study, we aimed to manipulate the neural states of working memory items by 

prioritizing them. We hypothesized that prioritized items would be stored in an activity-

dependent state, while non-prioritized items would be encoded in an activity-silent state. 

However, this study did not collect any neural data; therefore, we did not provide data on the 

neural correlates of memory item representations. We did not have data on the neural states in 

which prioritized and unprioritized items were stored. Studies that collect concurrent neural data 

during the task could reveal how successfully items are encoded into active or silent states. 

The performance difference between cued and uncued items might indicate that different 

neural systems maintain these two types of items. On the other hand, one of our findings was that 

cued items were equally resistant, if not more, to interference but also stored with higher 

precision and lower random guessing. Our prediction that functionally passive items in working 

memory would have an advantage against interference was not supported.  



There could be several reasons for this. The current study used a pre-cueing (block-

cueing) method, which indicates which item will be probed before the working memory items 

are even presented, allowing participants to encode the memory items with this knowledge. 

Although participants showed reasonable performance for uncued items, they may have allocated 

disproportionately more attention to the cued items, which could have substantially weakened 

the representations of the uncued items, even though a response was always required for them as 

well. Such a difference between the allocation of internal focus on items might have hindered 

any possible protection against distraction for uncued items. The affected representations of 

uncued items could explain the elevated random guess rates between cued and uncued items. A 

study using a retro-cue design could measure the effectiveness of interference by balancing the 

focus of attention across items, while still prioritizing items during WM maintenance. 

The interference task used in our study consisted of two conditions besides the baseline 

condition, in which no task was present. These two conditions were match and no-match. In the 

no-match condition, which did not overlap with the cued item’s content, the interference task still 

overlapped with the uncued item. In summary, the interference task used in our study was not 

qualitatively different from the memory items. This could have created a ceiling effect for the 

interference impact, potentially obscuring any protective effect. 

Lastly, it might be argued we were not able to sufficiently represent functionally active 

WMs in active states. In that case, this may suggest that functionally passive items were not 

subjected to relatively activity-silent encoding either. This situation could lead to competing 

representations, in which cued items would always consume more of the focus of attention’s 

resources; therefore, they would exhibit a more accurate readout. 



Additionally, state-based working memory theories argue that the difference between 

prioritized and unprioritized items should lie in their functional properties but not their precision. 

In contrast, resource-based theories suggest that shifting priority could impair the precision of 

uncued items (Muhle-Karbe et al., 2021). Our findings support the latter, since we found a 

significant difference in precision between functional states. 

Conclusion 

 Working memory retention is maintained by dynamic processes. During the retention 

period, some representations require sustained firing, while others may be retained through 

sparse spikes and relatively silent activity. Although we demonstrated that functionally passive 

items in working memory perform worse compared to active items, we did not find any 

additional protection against interference for these items. Studies conducted with different 

designs could provide further insight into the neural correlates of functionally passive working 

memories and the advantages of these networks. 
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https://github.com/muratcanboyva/L-autodidacte. 

https://github.com/muratcanboyva/L-autodidacte

	08.2024
	Department of Psychology
	University of Groningen

