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Summary 

The thesis ‘Uncovering Statistical Biases: A Bayesian Reanalysis of Reported Gender 

Disparities in STEM Education’ assesses how prior findings on gender inequality in STEM 

education hold up under a Bayesian approach, using data from Guo et al. (2024). Replicability 

concerns raise questions not only about whether findings can be reproduced, but how they 

should be interpreted under different statistical frameworks. This study addresses that issue by 

asking: To what extent can a Bayesian reanalysis replicate and support the gender disparities 

reported by Guo et al. (2024)? The study focuses on country-level associations reported in the 

original article, comparing significance-based results to Bayes Factors via regression models. 

It also explores how methodological and epistemological choices inform interpretation in 

cross-national education research. The results showed partial alignment: some effects had a 

similar degree of evidence, while others yielded weaker or inconclusive Bayesian evidence, 

even when statistically significant under a frequentist framework. In other instances, Bayesian 

analysis indicated a higher degree of belief in an effect than the original study suggested. The 

study concludes that a reanalysis grounded in different methodological and epistemological 

underpinnings may support a contrasting lens through which to interpret findings. Moreover, 

it concludes that gender inequality in STEM education cannot be fully understood through 

country-level data alone, as such measures are often aggregated from a variety of indicators 

and carry sociopolitical assumptions about what constitutes equality, overlooking lived 

experiences. As such, the study calls for both methodological transparency and greater 

integration of contextual or qualitative approaches in future research. 

Samenvatting 

De scriptie ‘Uncovering Statistical Biases: A Bayesian Reanalysis of Reported Gender 

Disparities in STEM Education’ onderzoekt in hoeverre eerdere bevindingen over 
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genderongelijkheid in STEM-onderwijs standhouden onder een Bayesiaanse benadering, 

gebasseerd op data uit Guo et al. (2024). Zorgen over de reproduceerbaarheid van onderzoek 

roepen niet alleen vragen op of bevindingen herhaalbaar zijn, maar ook hoe ze geïnterpreteerd 

worden binnen verschillende statistische kaders. Deze studie behandelt die kwestie door de 

vraag te stellen: In hoeverre kan een Bayesiaanse heranalyse de gerapporteerde 

genderverschillen uit Guo et al. (2024) repliceren en ondersteunen? De studie onderzoekt 

landniveau-associaties uit het oorspronkelijke artikel en vergelijkt frequentistische resultaten 

met Bayes Factoren met regressiemodellen. Daarnaast wordt onderzocht hoe methodologische 

en epistemologische keuzes de interpretatie van bevindingen in cross-nationaal 

onderwijsonderzoek vormgeven. De resultaten lieten een gedeeltelijke overeenstemming zien: 

sommige effecten lieten een vergelijkbare mate bewijs zien, terwijl andere zwakkere of 

onduidelijke Bayesiaans bewijs opleverden, ondanks significante resultaten in de 

frequentistische analyse. In andere gevallen wees de Bayesiaanse analyse op een sterker 

vertrouwen in een effect dan het oorspronkelijke onderzoek suggereerde. De studie 

concludeert dat een heranalyse, gebaseerd op andere methodologische en epistemologische 

uitgangspunten, een ander perspectief op de interpretatie van bevindingen kan ondersteunen. 

Bovendien stelt de studie dat genderongelijkheid in STEM-onderwijs niet volledig begrepen 

kan worden op basis van kwantitatieve gegevens op landniveau, aangezien zulke maatstaven 

vaak zijn samengesteld uit verschillende indicatoren die sociopolitieke aannames bevatten 

over wat gelijkheid inhoudt en geleefde ervaringen over het hoofd zien. Daarom pleit de 

studie voor methodologische transparantie en meer integratie van contextuele of kwalitatieve 

benaderingen in toekomstig onderzoek. 
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Introduction 

In the recent past, a replication crisis was surging through the social sciences 

landscape (Field et al., 2019). Previous large-scale replication efforts revealed that only 36% 

of studies produce comparable results to the original findings (Open Science Collaboration, 

2015). As a consequence, the credibility of pivotal discoveries has been obelized. Schnepf and 

Groeben (2024) argue that we have yet to fully overcome this crisis, but the first steps 

towards resolution have been taken (e.g., guidelines for more openness and transparency). 

However, these strategies are not effective enough because they are superficial and inherently 

preemptive (Field et al., 2019; Schnepf & Groeben, 2024). Thus, today’s body of literature 

remains a jungle of uncertainty, where the chance of coming across reliable findings seems as 

haphazard as navigating one’s way out of thick undergrowth. According to Field et al. (2019) 

and many others, the most direct way to resolve this issue is by replicating existing empirical 

research. 

 One area where the ground is ripe for gain is that of science, technology, engineering 

and mathematics (i.e., STEM) education; particularly in addressing persistent gender gaps. 

Although more women are entering higher education, they remain underrepresented in STEM 

(Spencer et al., 1999; Yazilitas et al., 2017). This underrepresentation extends beyond 

academia, as women make up less than 30% of all STEM workers (World Economic Forum, 

2023). The lack of women in high-paying, high-skilled STEM jobs limits both workforce 

development and women’s social mobility, impacting national and personal growth 

opportunities (Beroíza-Valenzuela & Salas-Guzmán, 2024). Moreover, this gender bias 

wastes valuable talent and potential and must be addressed to support fairer human 

development (Msambwa et al., 2024).  

 The underrepresentation of women is reinforced by the common stereotype that 

women are less capable in STEM fields (Beroíza-Valenzuela & Salas-Guzmán, 2024; Spencer 
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et al., 1999). This stereotype has long been falsely justified by the belief that this gendered 

skill gap is rooted in genetics (Spelke, 2005). For example, Klysing (2020) explains how 

psychological essentialism (i.e., the belief that social categories like gender reflect natural, 

inherent traits) often leads people to assume that gender differences in behavior or ability are 

biologically determined. Despite a lack of evidence for such a belief, consequences of these 

misconceptions have a widespread impact, as they negatively influence academic experiences 

and lead to discouragement in pursuing STEM-related degrees or professions for women 

(Bloodhart et al., 2020; Spencer et al., 1999). Moreover, the ways in which society influences 

boys and girls differently based on traditional gender expectations (i.e., gender-role 

socialization theory), results in unequal representation in STEM fields (Narh & Buzzelli, 

2024; Spencer et al., 1999). For instance, boys are often encouraged to pursue STEM subjects 

while girls receive less support (Spencer et al., 1999). Similarly, students’ self-concept and 

belief in their abilities play a crucial role in shaping behavior and are strongly linked to 

successful learning and performance (Dweck, 1999; OECD, 2015; Swafford & Anderson, 

2020). These factors collectively contribute to the gender gap. Stereotypes shape the level of 

support someone receives, which in turn influences their self-belief and ultimately affects 

their performance. 

 Recent studies (e.g., Else-Quest, Hyde, & Linn, 2010; Stoet & Geary, 2018) have 

explored this issue with prominent implications, eliciting a need for replication in order to 

check robustness. The current study heeds this need by replicating and critically examining a 

recent cross-national study on gender disparities in STEM education. The first aim is to 

determine the reliability of the research by examining whether reported findings hold under a 

Bayesian reanalysis, or if methodological flaws and biases have affected conclusions. Rather 

than proving or disproving the existence of gender disparities in STEM, I focus on assessing 

whether a specific reported pattern holds up under alternative statistical scrutiny. In doing so, 
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I examine how different statistical approaches can provide distinct epistemological 

perspectives on evidence and confirmation. In a broader sense, my second aim is to show how 

the strength and interpretation of claims in cross-national educational research are framed by 

methodological choices.   

 The article by Guo et al. (2024) provides a proper foundation for reanalyzing of the 

reported statistical findings. The article focuses on three important STEM-related constructs: 

relative strength measures, aspirations, and graduation rates. They take a cross-cultural 

approach, relating those constructs to country-level gender equality measures. Their analysis 

showed a negative relationship between gender equality (i.e., GGGI) and relative science 

strength. This suggests that in countries that are more gender-equal, the gender gap in science 

achievement, relative to math and reading, was larger. However, this link disappears when 

education-specific equality measures (i.e., mean years of schooling, university enrollment, 

and expected years of schooling) were included. These measures were selected because they 

are directly linked to the three outcome variables (i.e., relative academic strength, STEM 

aspirations, and STEM graduation) and reflect early indicators of gender equality in education 

across societies. Based on this, they concluded that the observed differences are less about 

gender equality itself and more about broader systemic and cultural differences. This was also 

the case for participation in STEM (e.g., graduation rates) and STEM aspirations, which 

presented wide variability across countries, with no strong link to the gender equality 

measures. Moreover, STEM aspirations were found to be more related to general academic 

performance and relative math strength than relative science strength.  

 Bayesian epistemology is at the heart of my research when assessing the robustness of 

Guo et al.'s (2024) findings. Bayesian confirmation theory (BCT) is widely regarded as 

central to Bayesian epistemology (Strevens, 2017). According to Hawthorne (2011), BCT is a 

probabilistic approach to evaluating how evidence confirms or disconfirms scientific 
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hypotheses, using Bayes’ Theorem to calculate the degree of confirmation. To illustrate how 

Bayesian epistemology works: 

Suppose you believe there is a 70% chance it is going to rain today. That would be 

your prior belief (perhaps based on season or a weather forecast). Later, you look outside 

and see dark clouds forming. That is your new evidence, which makes you more confident it 

will rain. This leads you to update your belief to 90%. 

Bayesian epistemology models belief updating in the same way: you start with a prior and 

then update your belief as new evidence becomes available. In this view, evidence is defined 

by the extent to which it shifts the degree of belief assigned to a hypothesis, not whether it 

crosses a threshold.  

 A premise of BCT is that all confirmation begins with some degree of prior 

plausibility. These priors influence how evidence is interpreted, but they are subjective: there 

is no single correct prior (meaning that two people can have different, reasonable starting 

beliefs). Indeed, using a default prior (such as a Cauchy) still carries assumptions about 

symmetry or scale. Moreover, within BCT, confirmation depends on the likelihood of 

observing the evidence given a hypothesis. However, these likelihoods are determined by 

auxiliary assumptions, background knowledge, and model structure, making them partly 

subjective. Thus, Bayesianism acknowledges the subjectivity of priors and model choices, 

while providing structured, transparent rules (Bayes’ Theorem) for updating those beliefs. 

Bayes’ Theorem is structured in a sense that it tells you how to update your beliefs based on 

new data, making the process internally consistent (i.e., everyone uses the same mathematical 

framework). It is transparent because it requires you to state your priors explicitly and explain 

why you chose them, as well as making it clear (through sensitivity analyses) how results 

change if priors change. Additionally, BCT emphasizes the theory-ladenness of confirmation: 

what counts as evidence depends in part on the theoretical presuppositions underlying the 
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model (Hawthorne, 2011; Strevens, 2017), especially in social science, where theoretical and 

cultural context is embedded in the data.  

 Thinking of evidence as probabilistic rather than all-or-nothing (i.e., accepting or 

rejecting the null hypothesis) makes Bayes’ Theorem a useful tool for quantifying how 

strongly the data support one hypothesis over another. While this epistemology provides a 

conceptual foundation, Bayesian statistical inference is the methodological approach I take in 

reanalyzing the findings of Guo et al. (2024). 

 As large-scale research commonly influences policy and public discourse, another 

pertinent concept to consider is reproducibility. Reproducibility refers to the ability to draw 

the same results as another study using the same dataset and methods. This is often viewed as 

a way to assess the reliability of the original findings, although that view is contested within 

the metascience community. Given that Guo et al. (2024) synthesized data from multiple 

international sources using traditional statistical methods, it is important to assess whether 

their conclusions hold under alternative analytical approaches, such as Bayesian inference, 

primarily because cross-national data are inherently complex and combining them introduces 

heterogeneity. Reanalyzing the data using a different inferential paradigm serves as a targeted 

robustness check, indicating how sensitive the conclusions are to methodological 

assumptions. 

 With this context in mind, I seek to answer the following question: To what extent can 

a Bayesian reanalysis replicate and support the gender disparities reported by Guo et al. 

(2024)? To answer this research question, I consider two sub-questions:  

(1) How do the Bayesian reanalysis results compare to the original frequentist 

 findings, and what methodological or epistemological challenges arise from this 

 comparison? 
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 (2) What are the implications of the reanalysis for understanding gender disparities in 

 STEM education and how can Bayesian inference inform their interpretation?  

The reanalysis is performed under the assumption that if statistical biases have affected the 

findings of Guo et al. (2024), it will likely be reflected in discrepancies between the direction 

and strength of evidence between the reported frequentist tests and the Bayesian reanalysis.1 

In such cases, discrepancies between the findings may underscore the importance of 

replication. At the same time, this reanalysis may draw attention to how different 

methodological frameworks can lead to differences not only in results, but also in the 

interpretation of the same data. This reflection contributes to ongoing conversations about 

reproducibility of current research and emphasizes the importance of evaluating how evidence 

is produced and interpreted in studies addressing gender imbalance in STEM education. 

 My thesis will start with an overview of Guo et al.’s (2024) results. Next, I will 

provide an outline of the methodology, explaining the Bayesian reanalysis approach and its 

application to the used datasets. Following this, I will present a summary of my findings and 

compare Bayesian results to those of Guo et al. (2024). In the ensuing discussion and 

conclusion, I will discuss the two sub-questions and main research question and note the 

limitations of this study and directions for future studies. 

G24 as a case 

 As has been made clear, gender disparities in STEM education remain a significant 

concern in both academic research and everyday practice. Although numerous studies have 

attempted to quantify these disparities, the reliability of their statistical interpretations 

 
1It is also important to note that it is entirely possible to get statistical discrepancies between Bayesian and 

frequentist results that are not the result of bias but can arise from methodological differences such as priors or 

sample size effects. 
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warrants a closer look. This section situates the present study in relation to G24, giving an 

overview of their findings. I have listed all the results from G24 in Table 1. 
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Table 1  

Results from G24 

Row Variables Statistics Significant 

1 Gender gap in intraindividual science 

strength; GGGI 

 

r = .39, 95% CI [.17, .57], p < .01 Yes 

1.1 Gender gap in intraindividual science 

strength; GGGI 

Linear vs. quadratic: F = .73, p = .394, Δdf = 1 

Cubic model fits best: F = 5.03, p = .009, Δdf = 2; Δ11.1%, Adjusted 

R² = 9.03% 

Linear: β = −.17, SE = .21, 95% CI [−.59, .25] 

Quadratic: β = −.05, SE = .07, 95% CI [−.19, .08] 

Cubic: β = .16, SE = .05, 95% CI [.06, .27] 

All VIFs < 4 

Yes 

2 Gender gap in intraindividual math strength; 

GGGI 

 

r = −.16, 95% CI [-.38, .07] No 

3 Gender gap in intraindividual reading 

strength; GGGI 

 

r = −.17, 95% CI [-.38, .07] No 

4 Gender gap in intraindividual science 

strength; gender gap in university enrollment 

 

r = −.01, 95% CI [-.24, .23] 

 

No 

5 Gender gap in intraindividual science 

strength; gender gap in mean years of 

schooling 

 

r = −.07, 95% CI [-.29, .17] No 

6 Gender gap in intraindividual science 

strength; gender gap in expected years of 

schooling 

r = .16, 95% CI [-.07, .37] No 
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7 Gender gap in STEM aspirations; GGGI 

 

r = .11, 95% CI [-.13, .34] No 

8 Gender gap in STEM aspirations; gender gap 

in expected years of schooling 

 

r = .25, 95% CI [.03, .46] Yes 

9 Gender gap in STEM aspirations; gender gap 

in university enrollment 

 

r = .16, 95% CI [-.08, .38] No 

10 Gender gap in STEM aspirations; gender gap 

in mean years of schooling 

 

r = -.03, 95% CI [-.26, .20] No 

11 Gender gap in intraindividual science 

strength; GGGI 

 

Linear vs. quadratic: F = 3.28, p = .075, Δdf = 1 

Cubic > linear: F = 3.46, p = .038, Δdf = 2 

Linear: β = .27, SE = .20, 95% CI [-.12, .67] 

Quadratic + cubic: β = -.21, SE = .08, 95% CI [-.37, -.04]; Cubic: β = 

.10, SE = .05, 95% CI [.00, .20] 

 

Yes 

12 Gender gap in intraindividual science 

strength; gender gap in university enrollment 

 

r = .04, 95% CI [-.22, .30] No 

13 Gender gap in intraindividual science 

strength; gender gap in mean years of 

schooling 

 

r = .07, 95% CI [-.18, .32] No 

14 Gender gap in intraindividual science 

strength; gender gap in expected years of 

schooling 

 

r = .24, 95% CI [-.01, .46] No 

15 Gender gap in STEM aspirations; GGGI 

 

r = .08, 95% CI [-.17, .33] No 
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16 Gender gap in STEM aspirations; gender gap 

in expected years of schooling 

 

r = .29, 95% CI [.04, .51] Yes 

17 Gender gap in STEM aspirations; gender gap 

in university enrollment 

 

r = .13, 95% CI [-.14, .39] No 

18 Gender gap in STEM aspirations; gender gap 

in mean years of schooling 

 

r = .17, 95% CI [-.08, .41] No 

19 GGGI; STEM graduation propensity 

 

r = −.43, 95% CI [−.58, −.26] 

 

Yes 

20 GGGI; Actual % of women in STEM degrees 

 

r = −.19, 95% CI [−.37, .01] 

 

No 

21 Mean years of schooling; STEM graduation 

propensity 

 

r = −.35, 95% CI [−.51, −.16] 

 

Yes 

22 Mean years of schooling; Actual % of women 

in STEM degrees 

 

r = .22, 95% CI [.03, .40] Yes 

23 Expected years of schooling; STEM 

graduation propensity 

 

r = -.18, 95% CI [-.37, .02] No 

24 Expected years of schooling; Actual % of 

women in STEM 

 

r = .36, 95% CI [.18, .52] Yes 

25 University enrolment; STEM graduation 

propensity 

 

r = .09, 95% CI [-.11, .28] No 

26 University enrolment; Actual % of women in 

STEM 

 

r = .02, 95% CI [−.18, .26]  No 
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27 STEM graduation propensity; Actual % of 

women in STEM; Gender gaps in aspirations; 

Gender gaps in science strength 

 

r ranged from −.10 to .17 

 

No 

Note. Row 1–6 represent findings on gender differences in relative academic strength (PISA2018); Row 7–10 represent findings on gender 

differences in STEM aspirations (PISA2018); Row 11–14 represent findings on gender differences in relative academic strength (PISA2015); 

Row 15–18 represent findings on gender differences in STEM aspirations (PISA2015); Row 19–27 represent findings on gender differences in 

STEM graduation (PISA2018). GGGI = Global Gender Gap Index.
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Methodology 

To evaluate Guo et al.’s (2024) results, I will perform a Bayesian reanalysis of the data 

to investigate alternative interpretations and assess the reliability of reported gender 

disparities in STEM education. Generally, I hypothesize that statistical biases (which are 

known to be pervasive in the behavioral sciences literature) in the original analysis will result 

in inaccurate estimates of gender disparity in STEM education. Previous Bayesian reanalyzes 

(see e.g., Field et al., 2019) have demonstrated that it is unlikely that all tests conducted in the 

original article can be sufficiently reproduced even when the same data are the subject of the 

analysis. P-values can either be shown to be too modest for the strength of the effects 

observed in in the data, or to overestimate the effect. The study hypothesis, therefore, is kept 

broad so as to enable flexibility and inclusivity in the analysis and avoid any preconceived 

bias. Thus, this study systematically analyses secondary data, executed through JASP and R 

software, using a Bayesian approach, rather than a frequentist approach. 

 The reason for choosing a Bayesian analysis is two-fold. First, is its ability to provide 

relative evidence both for and against the null hypothesis by assessing how strongly the data 

support it compared to the alternative, which helps address false positives (i.e., Type I errors) 

and false negatives (i.e., Type II errors). It is important to know if these types of inaccuracies 

occurred, as they may lead to incorrect conclusions. In the first case, the data might actually 

support the null hypothesis even if the original findings show a significant p-value. A 

Bayesian analysis can show stronger pro-null evidence in this case. In the second case, the 

original study may report non-significant p-values, even though there is a real effect. Here, a 

Bayesian analysis can give evidence in favor of the alternative hypothesis by comparing how 

strongly the data support it relative to the null. Unlike frequentist statistics, which only allow 

a binary decision threshold of ‘reject the null’ or ‘fail to reject the null’, Bayesian methods 

present a more nuanced view in both cases by estimating how likely the data are under 
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different hypotheses. It shows whether the evidence favors the presence of an effect or not 

given the data.  

 Second, the Bayesian approach can also be valuable to indicate when more data are 

needed. Under the frequentist framework, low power (insufficient data) leads to failing to 

reject the null, but gives no further information and can incorrectly cause researchers to 

assume that no effect exists (an informal fallacy: absence of evidence of an effect is not 

evidence of the absence of an effect, in this case). Being able to test for the presence or 

absence of an effect, or see if more data should be collected, is powerful.  

 As mentioned, a previously selected paper will be central in this study: 

‘Cross-Cultural Patterns of Gender Differences in STEM: Gender Stratification, Gender 

Equality and Gender-Equality Paradoxes’ by Guo et al. (2024). From here on, the article will 

be referred to as: ‘G24’. I identified the article through a literature search in the ERIC 

database using the following search terms: “STEM education”, “gender differences” or 

“gender inequality”, and “international”. The inclusion criteria for the search required that the 

paper be peer-reviewed and published within the timeframe of 2019 to 2024. Additionally, I 

selected the article due to its comprehensive nature and methodologically rigorous analysis. 

G24 did not just include relative science test scores in their analysis but incorporated other 

factors such as aspirations and graduation rates. Moreover, they established a well-thought-

out methodology, making use of large-scale, high-quality data, constructing specific variables 

instead of using raw scores, and applying advanced statistical models (e.g., multilevel 

models). During the analysis, they took a novel approach to measuring students’ relative 

science strength by comparing them to students’ (relative) math and reading strengths, as 

opposed to just looking at science scores alone. Taking it even further, they connected the 

gender difference in science strength to national-level gender equality. Combining individual-

level data with country-level context, offers an integrated view of both individual and 
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contextual factors. Collectively, these aspects show how the article presents a strong empirical 

foundation for reanalysis. 

 G24 mainly made use of two PISA datasets: PISA2015 and PISA2018. PISA typically 

evaluates the science, math, and reading performance of 15-year-olds using nationally 

representative samples (OECD, 2019). According to G24, PISA2015 includes 416,690 

adolescents from 62 countries/regions. PISA2018 includes 528,681 adolescents from 71 

countries/regions. Notably, the reason for analyzing PISA2015 was to replicate the PISA2018 

analyses to see whether there were significant differences between the two. In addition to the 

PISA database, they incorporated an OECD dataset on the number of graduates by field of 

education (i.e., STEM) and several national indicators of gender equality retrieved from 

UNESCO: GGGI, the attendance rate of tertiary education, mean years of schooling, and 

expected years of schooling. For the OECD and the UNESCO datasets, they used the years 

2015 and 2018 in order to match them up with the PISA datasets.2 

 In the current study, I will focus solely on the country-level research questions from 

G24 (i.e., RQ 1, 2 & 4)3, as these findings are often used to make broad claims with wide 

implications. A Bayesian reanalysis is particularly suited to this level of analysis because it 

allows for a more detailed assessment of the strength of evidence, while acknowledging the 

theory-ladenness of data interpretation in the social sciences. On top of that, it narrows the 

scope, making the reanalysis more focused and manageable.  

 I will use the same methodological approach as G24 to ensure consistency and 

comparability. In the following sections, an explanation of how the measures were computed 

in the original study (and thus in mine) will be demonstrated, as this is essential for 

 
2In the current research, countries with scores that were NA for one or both variables in a regression analysis 

were taken out. 
3RQ1: How are gender differences in relative science strength (science achievement compared to math and 

reading) associated with country-level gender equality?  

RQ2: How are gender differences in STEM career aspirations associated with country-level gender equality? 

RQ4: How are gender differences in STEM graduation associated with country-level gender equality? 
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understanding the analysis. In addition, I will clarify the method of analysis employed in 

G24’s study, which will also be adopted in this reanalysis. 

Gender Differences in Relative Science Strength 

 The dependent variables include students’ relative academic strength (science, math, 

and reading achievement), STEM-related career aspirations, and STEM graduation.  

With regards to student academic performance, PISA estimated and reported 10 

plausible values for each subject to represent student performance in their dataset. As all 10 

plausible values were included in G24’s analysis, they will also all be used in the current 

study. To calculate students’ intraindividual academic strength, I followed the procedure 

outlined by Stoet and Geary (2018), as adopted by G24. (1) First, science, math, and reading 

achievement were standardized within each country to produce z-scores for each subject. (2) 

Next, a standardized average score of the three new z-scores was calculated for each student 

(zGeneral). (3) Lastly, each student’s intraindividual science strength score was derived by 

subtracting zGeneral from zSience, and then that score was standardized again. To measure 

the national gender gap in science strength, I calculated the average science strength for boys 

and girls in each country. Then, I subtracted the girls’ average from the boys’ average. The 

national gender gap in intraindividual science strength was structured so that high values 

indicate high gender inequality, with boys outperforming girls in relative science scores. 

Gender Differences in STEM Aspirations 

 Adhering to G24’s method, I coded STEM aspirations as a binary variable (1 = 

STEM; 0 = non-STEM) following PISA’s coding strategy (OECD, 2016, p. 283). I calculated 

the national gender gap in STEM aspirations by dividing the percentage of female students 

who aspire STEM careers by the percentage of male students who did so. As in G24, scores 

greater than one portray higher STEM aspirations among girls, whereas scores less than one 

portray higher aspirations among boys. 
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Gender Differences in STEM Graduation 

 In G24, gender differences in STEM graduation was reviewed by using two indicators: 

the propensity of women to graduate with STEM degrees and the actual percentage of women 

among people who earn STEM degrees.  

 I derived the first measure using the formula reported in G24: a / (a + b), where a is 

the percentage of women who graduate with STEM degrees, and b is the percentage of men 

who graduate with STEM degrees. This measure compares how likely women are to graduate 

in STEM relative to men, independent of the gender differences in the overall number of 

graduates. The second measure reflects the share of women who acquired STEM degrees 

within the total population of STEM graduates during a given timeframe (in this case: 2018). 

Country-Level Gender Equality Measures 

 As in G24, I used the Global Gender Gap Index (GGGI) as a composite measure of 

national gender equality. It includes 14 indicators (e.g., income, life expectancy) to assess 

gender differences within countries.  

 On top of that, G24 used three relative difference measures of national gender equality 

in the education domain: the attendance rate of tertiary education, mean years of schooling, 

and expected years of schooling. Enrollment rate of tertiary education denotes “the ratio of 

total enrollment (in tertiary education), regardless of age, to the population of the age group 

that officially corresponds to the level of education shown” (Guo et al., 2024, p. 36). Mean 

years of schooling refers to “the average number of years of education received by people 

ages 25 or older, converted from education attainment levels using official durations of each 

level.” (Guo et al., 2024, p. 37).  Expected years of schooling (which refers to the ‘school life 

expectancy’ dataset from UNESCO) means “the number of years of schooling in a country 

that children of school entrance age can expect to receive if prevailing patterns of age-specific 

enrolment rates persist throughout the child’s life.” (Guo et al., 2024, p. 37). A within-country 
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relative approach was used to compute gender equality indices, by taking the ratio female to 

male values (e.g., mean years of schooling for women divided by that for men). 

 Finally, as my thesis focuses on country-level analyses, individual-level control 

variables such as student gender and family socioeconomic status (SES), included in G24’s 

multilevel models, were not applied here.  

Data Analysis 

 For the data analysis, I will apply the same approach in my study, that G24 explains. 

Of course, I will conduct the analyses through a Bayesian framework, as opposed to the 

frequentist used in G24. Moreover, G24 conducts all models with Mplus 8.1, whereas in this 

study I will use JASP and R. I will employ JASP for all the analyses in this study, whereas R 

can be considered a supplemental tool in constructing the datasets. I will apply Bayesian 

linear regression for the country-level analyses examining the relationship between gender 

equality and gender gaps in STEM indicators. I conducted all the analyses using JASP’s 

default JZS prior (location = 0, scale = .354). I chose this prior because it is commonly used 

for Bayesian hypothesis testing and fits the type of analysis I am doing: it starts with the 

assumption that small effects are more likely, but it still allows the data to support larger 

effects if present.4 I performed two sensitivity analyses by varying the prior width (r = 0.25, 

0.354, 0.5, 0.707, and 1.0) for the associations between gender gap in relative science strength 

and GGGI, and STEM graduation propensity and GGGI (Figure 1). The results were 

consistent across prior widths, indicating that the evidence in favor of an effect remains robust 

across different prior assumptions. It is worth noting that the reanalyzes were initially 

conducted within a frequentist framework to ensure consistency with G24’s results. This step 

 
4This prior is based on a Cauchy distribution, which assigns some probability to all possible effect sizes, no 

matter how large. 
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was essential for comparability, confirming that any differences observed in the Bayesian 

analyses were accurate and valid.  

Figure 1 

Sensitivity Analyses Results 

 

 

 

 

 

 

Note. Sensitivity analyses of the Bayes Factor (BF10) across prior widths. The left panel 

displays results for the relationship between gender gap in relative science strength and 

GGGI. The right panel displays results for the relationship between STEM graduation 

propensity and GGGI. 

Results 

 In this section, I will report the results from the Bayesian reanalysis and compare them 

to the results from G24. Rather than presenting each model result individually, I will focus on 

summarizing patterns across the tested models. The results are organized by outcome type: 

relative academic strength, STEM aspirations, and STEM graduation. I included a visual 

overview to illustrate the range and distribution of findings (Figure 2) and a more detailed 

table of the Bayesian results can be found in the Appendix.  

Overview of Bayes Factors 

A total number of 25 models were tested and their Bayes Factors are summarized in Figure 2. 

The majority of models showed a Bayes Factor below the frequently used threshold of 3, 
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indicating weak or inconclusive evidence (Dittrich, Leenders, & Mulder, 2017).5 Then there 

are three that float around that line (i.e., row 13, 24, and 26), making them borderline cases. 

The evidence is moderate and possibly leaning toward support for an effect. Only a small 

number demonstrated strong evidence, suggesting that a few predictors may play a more 

substantial role. 

Figure 2 

Visual Representation of Bayesian Results 

 

Note. Each bar represents the BF10 for a specific model-row combination. The row numbers 

on the x-axis correspond to those in the Appendix. The dashed line at BF10 = 3 indicates the 

common threshold for moderate evidence in favor of an effect. Rows 1.1 and 11 are excluded 

because they involve model comparisons. Row 27 is excluded because it contains multiple 

BF10s (ranging from .369–.512). 

Relative Academic Strength 

 Across 9 tested models, only the relationship between GGGI and gender gap in 

relative science strength in PISA2018 showed strong evidence in favor of an effect, with a 

positive direction (BF₁₀ = 15.22, M = .661). Coinciding with G24’s significant result, it 

indicates that the data are about 15 times more likely under the alternative model than under 

 
5It is good to note that this Bayesian ‘threshold’ does not involve the same reliance on strict cut-off points as 

frequentist statistics; it serves as a heuristic guideline, not a hard rule. 
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the null model, and that the gender gap was larger in more gender-equal countries. In contrast 

to science, the results for math and reading, as well as the three gender equality indices, were 

too weak to support a meaningful interpretation. Concerning PISA2015, the relationship 

between mean years of schooling and gender gap in relative science strength showed 

moderate support for an effect (BF₁₀ = 3.859). Although G24 did not find this relationship 

statistically significant, the present results indicate that mean years of schooling may be 

associated with gender differences in academic science strength, though this warrants further 

investigation. The results regarding the other two gender equality indices were inconclusive.   

 For the relationship between GGGI and the gender gap in relative science strength, the 

cubic model was the most supported for this sample (P(M|data) = .450). Including the cubic 

term improved model fit, as reflected in a high inclusion Bayes Factor (BFinclusion = 41.457), 

while the overall model showed moderate-to-strong support compared to all other models 

(BFM = 9.011).6 Regarding the PISA2015 findings for the same relationship, the best-fitting 

model included all three terms (linear, quadratic, and cubic) with the highest posterior 

probability (P(M|data) = .516), although evidence in favor of this model against all other 

models was moderate (BFM = 3.195). This indicates that the non-linear relationship is 

plausible within this sample, but not strongly supported. Also, the quadratic term improved 

model fit (again, within this sample) as indicated by a high inclusion Bayes Factor (BFinclusion 

= 14.396), which differs slightly from G24 where both quadratic and cubic terms were 

significant. Although there was moderate evidence suggesting that including a cubic term also 

improves model fit (BFinclusion = 4.360), its contribution appears more limited than suggested 

by G24. Given the complexity of cross-national data, these patterns may reflect overfitting 

rather than a robust or interpretable effect. Further testing in new datasets would be required 

to assess overall strengths and generalizability. 

 
6I standardized GGGI beforehand to avoid multicollinearity.  
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STEM Aspirations 

 Between the 8 models regarding STEM aspirations that were tested across PISA2015 

and PISA2018, all came out inconclusive, meaning that the data are barely more likely under 

one model than the other. Although this indicates that there is not enough evidence to support 

a strong conclusion, G24 did find a significant relationship between gender gap in expected 

years of schooling and gender gap in STEM aspirations for both PISA2015 and PISA2018. 

These discrepancies, between the Bayesian inconclusive findings and the frequentist 

significant findings, may have occurred due to differences in sample composition or analytical 

approach.7  

STEM Graduation 

 Among the models predicting female STEM graduation propensity and actual 

percentage of women in STEM, only two showed strong evidence for an effect: GGGI and 

female STEM graduation propensity (BF₁₀  = 13.931), and mean years of schooling and actual 

percentage of women in STEM (BF₁₀ = 14.502). For the first, the direction of the effect was 

negative (M = -.38), suggesting countries with higher gender equality tend to have lower 

female STEM graduation propensity. The direction of the latter was positive (M = .63), 

indicating that countries where women have more years of schooling relative to men tend to 

have a higher percentage of women in STEM fields. These relationships should be interpreted 

cautiously, though, given that broader systemic differences not captured by the current model 

may play a role. Again, generalizability is limited, and these findings should be investigated 

further in future research. 

 Additionally, there was some support for a positive association between actual 

percentage of women in STEM and expected years of schooling (BF₁₀ = 3.615, M = .09). In 

comparison to G24, who found a significant relationship, the evidence here is moderate. 

 
7This discrepancy will be investigated further in the discussion. 
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Contrastingly, they found no significant relationship between actual percentage of women in 

STEM and university enrolment, when again the current evidence is moderate (BF₁₀ = 4.111, 

M = .09). While the evidence is moderate (suggesting the effect might be real), the effect sizes 

are small and may be sensitive to sample or model changes. Careful interpretation and future 

research are therefore necessary, as the practical significance of these findings is limited. 

Another interesting discrepancy happened between G24’s significant finding for the link 

between mean years of schooling and STEM graduation propensity, and the inconclusive 

Bayesian results (BF₁₀ = 1.400). This suggests that the evidence for this relationship is not 

strong enough to clearly support or reject the presence of an effect and may not be 

generalizable across samples or statistical approaches. 

Discussion 

 In this thesis, I set out to determine the reliability of prior research on gender 

disparities in STEM education by examining reported findings using a Bayesian approach. 

The main research question was: To what extent can a Bayesian reanalysis replicate and 

support the gender disparities reported by Guo et al. (2024)? This question was then split into 

two sub-questions: (1) How do the Bayesian reanalysis results compare to the original 

frequentist findings, and what methodological or epistemological challenges arise from this 

comparison? (2) What are the implications of the reanalysis for understanding gender 

disparities in STEM education and how can Bayesian inference inform their interpretation? 

To address each sub-question, I structured the discussion to examine them both individually, 

with the first sub-question linked to methodological insights, and the second to substantive 

implications for gender in STEM. Following this, I will discuss limitations and suggestions 

for future research. 
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Methodological Insights 

 The Bayesian reanalysis showed partial alignment with G24’s findings, with some 

predictors yielding similar effects, but most diverging in strength or certainty. For example, 

the relationship between gender gap in relative science strength and GGGI had a large Bayes 

Factor, aligning with the original frequentist finding of a significant p-value (p < .01). From a 

frequentist perspective this would mean that it is unlikely that the observed relationship 

occurred by chance under the null hypothesis. In Bayesian terms, a large Bayes Factor means 

the data provide strong evidence for the presence of an effect, relative to the null hypothesis. 

Thus, in this case both approaches suggest an effect, but the Bayesian analysis adds 

epistemological value by giving a more informative and interpretable understanding of the 

evidence by showing how strong the evidence is (i.e., treating evidence as a matter of degree, 

not a yes or no).  

 Contrastingly, the association between actual percentage of women in STEM and 

expected years of schooling was deemed significant under a frequentist framework. However, 

in comparison this translated into only moderate Bayesian evidence. This is not just a 

difference in result, but in what is fundamentally defined as confirmation: looking through a 

frequentist lens can potentially overstate the strength of evidence because it only suggests 

how rare the data would be if the null were true, not how plausible the hypothesis itself is. By 

contrast, the Bayesian result tempers that confidence (in evidence) by showing that the 

evidence only moderately supports the hypothesis but is not compelling. In epistemological 

terms, it essentially indicates how your degree of belief should change based on the data, 

relative to your prior. Regarding this case, this implies that one’s belief in the hypothesis 

should increase, but only modestly. 

 As explained earlier, the interpretation of evidence depends not only on the data, but 

also on priors and model assumptions, which are inherently subjective. While I addressed the 
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potential influence of subjective prior choices through a sensitivity analysis, (i.e., see Figure 

1), this does not eliminate the underlying epistemological issue of confirmation not being 

purely objective. However, Bayesianism does not view this subjectivity as a flaw, but as an 

integral part of scientific reasoning offering a framework (Bayes Theorem) for incorporating 

it. For instance, the JZS prior assumes that small to moderate effect sizes are more plausible 

than large ones, making it harder to provide evidence in favor of an effect. Despite that, the 

Bayesian analysis concerning the relationship between actual percentage of women in STEM 

and university enrolment indicated a moderate Bayes Factor, while the frequentist approach 

found it insignificant. As the prior was conservative, this moderate evidence for an effect 

increases confidence in the result (especially when compared to the frequentist finding), 

because the result does not depend on optimistic assumptions. More importantly, by explicitly 

stating and testing the influence of my prior, I made a subjective element of the analysis 

transparent, which is something frequentist statistics do not do. This illustrates the 

epistemological strength of Bayesian analysis in handling subjectivity. 

 In social science, hypotheses are very context-dependent, often involve values, and are 

harder to separate from, for example, cultural influences. Consequently, belief updating 

becomes more complex because data are ingrained in their own contexts, assumptions are 

often derived from theory, and variables (e.g., university enrolment, GGGI) are not objective. 

Although Bayesian inference does not remove this theory-ladenness, it makes such 

assumptions explicit through the specification of priors and shows, through transparent belief 

updating, how theoretical assumptions influences the interpretation of evidence. For instance, 

the GGGI is not a raw measure of gender inequality but a composite index based on 14 

indicators, each based on presupposed ideas about which gaps matter and how they should be 

quantified.8 One assumption behind the GGGI is that equal access to education is important 

 
8G24 takes this fact into account in their study by including the analyses with three education-related gender 

equality measures. I will discuss this point further in the next section. 
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for gender equality. A high GGGI score would suggest that boys and girls have more equal 

educational opportunities. In this case, one might use a prior that assumes gender gaps are 

smaller in those countries with a higher GGGI score. The belief updating process then shows 

how much the data challenge or support that belief, making the reasoning behind the 

interpretation of the results explicit. 

Substantive implications for gender in STEM  

 Although Bayesian inference does not explain why gender disparities occur, it may be 

a useful tool as it can indicate how strongly the data support their existence within a given 

sample. For instance, in my reanalysis the Bayes Factor suggested strong evidence for a 

relationship between gender equality (GGGI) and female STEM graduation propensity (in the 

PISA2018 sample). Other studies could replicate this by applying Bayesian inference to other 

PISA cycles to assess whether this is a consistent pattern across time or in particular 

countries. Based on those findings, researchers could then explore the ‘why?’ through 

contextual or qualitative research. Unlike frequentist analysis, which may treat non-significant 

results as inconclusive or dismissive, Bayesian inference could provide a clearer sense of how 

much support the data offer for or against a relationship. In the previous example, the strong 

Bayesian evidence suggests that the relationship is meaningful (within the sample), not just 

statistically detectable. On the other hand, in cases where only weak or moderate evidence is 

found, Bayesian inference helps avoid overinterpreting null results by distinguishing between 

absence of an effect and insufficient data. Still, interpreting what this evidence means requires 

more than just statistical tools. 

 This is especially important in studies like the present one, where gender inequality is 

analyzed at the country level and findings may reflect complex social realities as opposed to 

clear causal patterns. The results suggest a need for more critical and context-sensitive 

interpretations, rather than reinforcing firm conclusions about gender inequality in STEM, 
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particularly when based on country-level data. For instance, a higher gender equality score 

may coexist with entrenched gender stereotypes in a country. This can make it seem like 

equality exists, when in reality girls are still discouraged and underrepresented in domains 

like STEM. Indeed, even if patterns are observed, they can be hard to interpret because 

national indicators hide differences between and within countries. 

 This raises the question of whether national-level indicators are even appropriate for 

the kinds of gendered experiences being examined. Gender inequality is a concept that varies 

across contexts, yet aggregated indicators are based on ‘objective’ assumptions about what 

matters across all contexts. However, such assumptions are anything but neutral: they reflect 

sociopolitical values about what counts as equality, whose experiences are prioritized, and 

which forms of inequality are visible or measurable. For example, using the ‘university 

enrolment’ measure means that what counts as educational gender equality is formal 

participation, experiences of those who reach higher education are prioritized, and what is 

made visible is institutional access, not cultural norms or microaggressions. Instead of seeking 

universal conclusions about gender inequality in STEM, the findings hint at the importance of 

examining how such disparities crystallize within specific cultural, institutional, and 

educational contexts.  

 Reflecting on the limits of statistical reanalysis itself is therefore important. Gender 

inequality is not a natural law like gravity, it is a socially constructed and lived experience. 

Reducing it to statistical relationships or aggregated indicators may oversimplify the 

experiences of real people and sideline the voices of those most affected. In some cases, it 

may even be ethically problematic to treat gender inequality as a quantifiable phenomenon, as 

it passes over the stories and struggles behind the numbers. Ultimately, these findings suggest 

that interpreting gender disparities in STEM education requires not only statistical insight and 
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awareness of how gender is constructed and measured across various contexts, but also 

attention to the real-world experiences behind the data. 

Limitations and suggestions for future research 

 There were several limitations to this study, especially related to methodological and 

data-related challenges that may explain some of the deviations from G24’s findings. One 

issue involved retrieving the original datasets. Although G24 flawlessly documented the 

sources for PISA and the gender equality indices, the datasets on graduation rates were more 

difficult to locate. In particular, the dataset used for the actual percentage of women in STEM 

degrees could not be found in UNESCO’s records. After careful consideration, I assumed it 

came from the OECD (since they are closely related to UNESCO), but G24 did not specify 

this. 

 Further challenges emerged during the computation of certain variables. For instance, 

G24 does not mention whether sampling weights were used in calculating relative science 

strength, nor do they specify how the plausible values (PVs) were handled during 

standardization.9 Additionally, they omit a clear description of how the final relative science 

strength score was standardized. Stoet & Geary (2018) do mention this in their method 

section, although briefly. 

 There were also inconsistencies in the number of countries included in G24’s analysis. 

While they claim to use 71 countries for PISA2018 (even though the full dataset included 72 

countries), their supplementary file list only 61. Similar discrepancies appear for PISA2016, 

where they report 62 countries, but their (supplementary) table include 66, while the full 

dataset lists 73. In both cases, it remains unclear which countries were excluded and why. 

 
9i.e., starting with 10 PVs, taking the average of those 10 PVs, and then standardizing that average score; or 

starting with 10 PVs, standardizing all 10 PVs, and then taking the average of those 10 standardized PVs.  
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Furthermore, mismatches between reported country scores and those found in the public 

datasets raise questions about data accuracy and potential errors in the original study. 

 In short, a lack of transparency around data selection, transformations, and variable 

construction in G24 made exact replication difficult. However, publicly available data is 

prone to get updated once in a while, which may explain some differences in the datasets. The 

methodological and documentation limitations identified in this study should also be an 

incentive for researchers to fully explain how the data were prepared and handled, particularly 

for large-scale, publicly available data. 

 Future research should focus on replicating the individual-level analyses from G24 

using a Bayesian framework to evaluate their soundness. Such replication would be valuable 

for appraising whether broader national trends observed in G24 are supported or contradicted 

by micro-level patterns. As in G24 and related studies, exploring cross-cycle replication 

remains a compelling approach to evaluate temporal stability of observed relationships. 

Identifying whether such patterns are constant across time or tied to specific cycles can 

enhance (or decrease) confidence in their generalizability. At the same time, the nuanced and 

often inconclusive findings of this reanalysis emphasize the need for alternative 

methodological strategies that allow for a more context-sensitive interpretation. Future studies 

should carefully consider whether national-level data are suitable for capturing the complex, 

lived experiences of gender inequality, and keep an eye on the sociopolitical assumptions 

underlying the indicators used to represent it. While quantitative research can be valuable in 

this case, it may benefit from being complemented by qualitative or contextual research. 

Conclusion 

 In summary, I used a Bayesian reanalysis to revisit the reported gender disparities by 

Guo et al. (2024). By reviewing a selection of country-level research questions, the first aim 

was to test whether the study could be replicated and if the original findings would hold under 
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this alternative method. Building on that, my second aim was to illustrate how methodological 

choices frame the strength and interpretation of findings in cross-national educational studies. 

 The results demonstrated partial alignment with G24: some effects were similar, but 

most were inconclusive, demonstrating how research conclusions can be sensitive to the 

methods used to evaluate evidence. The Bayesian method provided insight into the degree of 

support for both presence and absence of effects, indicating weak or inconclusive evidence 

where G24 reported significance, and in some cases, suggested stronger support for an effect 

where the original analysis had not.  

 An overarching theme in this study is the importance of methodological transparency 

and caution with interpreting cross-national data on gender inequality, as the tools used to 

measure it are filled with assumptions and may not fully capture lived realities. This 

reanalysis suggests that alternative statistical approaches can provide a different lens through 

which to interpret complex phenomena and potentially support more reflective and 

transparent interpretations in educational research. 

 Ultimately, the value of this reanalysis lies not in overturning previous findings, but in 

reminding us that even widely accepted notions or methods deserve a second look; not to 

undermine their previous contributions, but to rethink the confidence we place in them. 
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Appendix 

Bayesian Results Table 

Row 

 

Variables Statistics Evidence strength 

1 Gender gap in intraindividual science strength; 

GGGI 

 

BF₁₀ = 15.22, M = .661 Strong evidence in 

favor of effect 

1.1 Gender gap in intraindividual science strength; 

GGGI (linear, quadratic, and cubic models) 

Cubic (best model) BFM = 9.011, R² = .214 

Linear: β = -.008, SD = .020, CI 95% = [-.061, .031], 

BFinclusion = .656 

Quadratic: β = -.003, SD = .006, CI 95% = [-.018, .007], 

BFinclusion = .583 

Cubic: β = -.016, SD = .006, CI 95% = [0.00, .028], 

BFinclusion = 41.457 

All VIFs < 5 

Moderate 

evidence 

 

2 

 

Gender gap in intraindividual math strength; 

GGGI 

 

 

BF₁₀ = .297  

 

Inconclusive 

3 Gender gap in intraindividual reading strength; 

GGGI 

 

BF₁₀ = .463  Inconclusive 

4 Gender gap in intraindividual science strength; 

gender gap in university enrollment 

 

BF₁₀ = .392  Inconclusive 

5 Gender gap in intraindividual science strength; 

gender gap in mean years of schooling 

 

BF₁₀ = .547 Inconclusive 
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6 Gender gap in intraindividual science strength; 

gender gap in expected years of schooling 

 

BF₁₀ = .391 Inconclusive 

7 Gender gap in STEM aspirations; GGGI 

 

BF₁₀ = .344 Inconclusive 

8a Gender gap in STEM aspirations; gender gap in 

expected years of schooling 

 

BF₁₀ = .388 Inconclusive 

9 Gender gap in STEM aspirations; gender gap in 

university enrollment 

 

BF₁₀ = .344 Inconclusive 

10 Gender gap in STEM aspirations; gender gap in 

mean years of schooling 

 

BF₁₀ = .431 Inconclusive 

11 Gender gap in intraindividual science strength; 

GGGI (linear, quadratic, and cubic models) 

 

All three terms (best model): BFM = 3.195, R² = .333, 

P(M|data) = .450 

Quadratic + Cubic: BFM = 4.241, R² = .312, P(M|data) = .278 

Linear: β = .029, SD = .030, 95% CI [-.007, .089], BFinclusion 

= 2.495 

Quadratic: β = -.028, SD = .013, 95% CI [-.049, .000], 

BFinclusion = 14.396 

Cubic: β = .011, SD = .008, 95% CI [-.0003, .025], BFinclusion 

= 4.360 

Null model: BFM = .002 

All VIFs < 5 

 

Moderate 

evidence 

12 Gender gap in intraindividual science strength; 

gender gap in university enrollment 

 

BF₁₀ = .307 Inconclusive 

13b Gender gap in intraindividual science strength; 

gender gap in mean years of schooling 

 

BF₁₀ = 3.859 Moderate 

evidence in favor 

of effect 
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14 Gender gap in intraindividual science strength; 

gender gap in expected years of schooling 

 

BF₁₀ = .307 Inconclusive 

15 Gender gap in STEM aspirations; GGGI 

 

 

BF₁₀ = .333 Inconclusive 

16c Gender gap in STEM aspirations; gender gap in 

expected years of schooling 

 

BF₁₀ = .347 Inconclusive 

17 Gender gap in STEM aspirations; gender gap in 

university enrollment 

 

BF₁₀ = .332 Inconclusive 

18 Gender gap in STEM aspirations; gender gap in 

mean years of schooling 

 

BF₁₀ = .502 Inconclusive 

19 GGGI; STEM graduation propensity BF₁₀ = 13.931, M = -.38, SD = .17, 95% CI [-.63, .00], R² = 

.176 

Strong evidence in 

favor of effect 

 

20 GGGI; Actual % of women in STEM degrees BF₁₀ = .350, M = -.016, SD = .13, 95% CI [-.36, .31], R² = 

.003 

Inconclusive  

21 Mean years of schooling; STEM graduation 

propensity 

BF₁₀ = 1.400, M = -.13, SD = .15, 95% CI [-.45, .032], R² = 

.174 

Inconclusive  

22 Mean years of schooling; Actual % of women 

in STEM degrees 

BF₁₀ = 14.502, M = .63, SD = .24, 95% CI [.00, .98], R² = 

.619 

Strong evidence in 

favor of effect 

 

23 Expected years of schooling; STEM graduation 

propensity 

BF₁₀ = .345, M = -.001, SD = .004, 95% CI [-.002, .014], R² 

= .010 

Inconclusive  

24 Expected years of schooling; Actual % of 

women in STEM 

BF₁₀ = 3.615, M = .09, SD = .06, 95% CI [.00, .19], R² = 

.169 

Moderate 

evidence in favor 

of effect 
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25 University enrolment; STEM graduation 

propensity 

BF₁₀ = .324, M = .000, SD = .003, 95% CI [-.004, .010], R² = 

.007 

Inconclusive  

26 University enrolment; Actual % of women in 

STEM 

BF₁₀ = 4.111, M = .09, SD = .06, 95% CI [.00, .20], R² = 

.177 

Moderate 

evidence in favor 

of effect 

 

27 STEM graduation propensity; Actual % of 

women in STEM; Gender gaps in aspirations; 

Gender gaps in science strength 

Propensity + gender gaps in science strength: BF₁₀ = .369 

Propensity + gender gaps in aspirations: BF₁₀ = .512 

 

Actual % + gender gaps in science strength: BF₁₀ = .348 

Actual % + gender gaps in aspirations: BF₁₀ = .439 

 

Inconclusive 

Note. Row 1–6 represent findings on gender differences in relative academic strength (PISA2018); Row 7–10 represent findings on gender 

differences in STEM aspirations (PISA2018); Row 11–14 represent findings on gender differences in relative academic strength (PISA2015); 

Row 15–18 represent findings on gender differences in STEM aspirations (PISA2015); Row 19–27 represent findings on gender differences in 

STEM graduation (PISA2018). GGGI = Global Gender Gap Index. The highlighted rows in the ‘Evidence strength’ column signify a difference 

between G24’s results and the results found in this study (e.g., row 8 was significant in G24. In the Bayesian reanalysis, the strength of the 

evidence is different from the G24 result); The bold rows resemble the significant rows in G24 (e.g., row 1 was significant in G24, and had a 

similar result in the Bayesian reanalysis).  

a Countries not included in G24: ARG, ESP, ISL, ISR, JOR, JPN, MNE, RUS, TUR; (Countries included in G24, but not in the current study: 

DOM, PAN, PER, URY). b Countries not included in G24: DOM, HKG; (Countries included in G24, but not in the current study: ALB, ARE, 
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CAN, DZA, GBR, GEO, HRV, IRL, JOR, JPN, LBN, MKD, MNE, POL, QAT, RUS, THA, TTO, TUN, VNM). c Countries not included in 

G24: DOM, HKG, MAC; (Countries included in G24, but not in the current study: ARE, DZA, GRC, PER, SGP, THA, TTO, TUN, URY). 

BF₁₀ = Bayes Factor comparing H1 to H0. BFM = Bayes Factor comparing each model to all the other models. P(M|data) = posterior probability of 

each model given the observed data. BFinclusion = Evidence for including a predictor across all tested models. 
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