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Abstract

Various phenomena in the social sciences show multistability and hysteresis, suggesting

they can be formulated as stochastic dynamical systems. Catastrophe theory is a

multifaceted and powerful mathematical tool to classify and study a certain class of

smooth dynamical systems; however, its application to the social sciences has been

controversial. This thesis introduces catastrophe theory at a conceptual level, discusses

current limitations in social science applications, and examines the merit of currently

published applications. We conclude that due to current methodological limitations and

difficulty of model usage the application of stochastic catastrophe theory in the social

sciences is a difficult, niche case.
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A thesis is an aptitude test for students. The approval of the thesis is proof that the

student has sufficient research and reporting skills to graduate, but does not guarantee the

quality of the research and the results of the research as such, and the thesis is therefore not

necessarily suitable to be used as an academic source to refer to. If you would like to know

more about the research discussed in this thesis and any publications based on it, to which

you could refer, please contact the supervisor mentioned.
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Introduction

Although linear models are simple to apply and grasp, they are incapable of

modeling non-linear phenomena with multiple stable states and the transitions between

them. Consider, for example, bipolar disorder. Bipolar disorder can be charaterized by the

individual switching between behavioral hypomania (abnormally high energy and activity

level) and depression. We can conceptualize the energy level as a continuous random

variable where low energy (depression) and high energy (hypomania) are two stable states

that are more distant from each other than in healthy individuals. At any given moment,

the person in question can transition from hypomania to depression and vice versa, and

then tend to stay at that activity / energy level for some time. As a result, a time-series of

the energy level of a bipolar individual would result in a bimodal probability distribution.

Multi-modality is an indication that the underlying phenomenon is driven by a non-linear

stochastic process (Cobb, 1978), and it might be fruitful to model it as a dynamical

system. A dynamical system is a system in which some function (generally a differential

equation) describes the evolution and time-dependence of the some variables over time.

Psychology has recently seen a movement towards conceptualizing discontinuous and

multi-modal phenomena like depressive episodes as dynamical systems (Cramer et al.,

2016; van de Leemput et al., 2014). Work has also been done to model and anticipate

critical transitions using dynamical systems approaches, but challenges with definitions,

data collection, and operationalization remain (Helmich et al., 2021). Therefore, a rigorous

dynamical systems approach that encompasses such multi-modal densities and non-linear

transitions could be a valuable addition to the psychologist’s analytical toolkit.

Catastrophe Theory (CT) is a subfield of dynamical systems and a contender for

such a tool. CT is a formal mathematical framework for dynamical systems that explains

non-linear transitions, multimodal densities, skew, kurtosis and other features described

below in this thesis. CT builds on a long line of thought originating from the work of Henri

Poincaré, George Birkhoff and many others with the goal of studying the topology,
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stability, and bifurcations of critical points (equilibria). CT was formulated by (Thom,

1972, 1994) and popularized by Zeeman (1976) who introduced the idea that CT could be

applied to the social, biological, and financial sciences. It was Zeeman who coined the term

’Catastrophe Theory’ and illustrated captivating thought experiments, such as using CT to

model transitions between war and peace, stock market bull runs and crashes, or

aggression and fear behaviors in dogs. The intuitive simplicity and accessibility of

Zeeman’s expositions captured the eye of the public, so much so, that even Salvador Dali’s

final painting, ’The Swallow’s Tail’ is a direct recognition of the beauty of CT. The focus of

this thesis is to investigate the track record of stochastic CT applications in real-world

scenarios, with a particular focus on the cusp catastrophe. The cusp is interesting because

it is the simplest of the catastrophes that includes both uni-stable and bi-stable behavior

and therefore has the capacity to model sudden transitions.

However, Zeeman’s examples were only conceptual, and academics were quick to

begin ringing alarm bells - pointing out the unfulfilled heavy-handed promises, misuse of a

deterministic theory in a stochastic context, the employment of poorly operationalized

ad-hoc control variables, a methodology that lacks quantitative rigor, and excessive

reliance on cloudy qualitative features for estimation (Rosser, 2007; Sussmann & Zahler,

1978). Since then, stochastic interpretations of CT have been formulated, but significant

obstacles to quantitative model fitting and application in the behavioral sciences remain

and are discussed below in this thesis.

Preliminaries on Dynamical Systems

Dynamical systems theory studies how the behavior of a real or artificial system

evolves over time. Some examples of real-world dynamical systems are the swinging of a

pendulum, population growth, the orbits of objects in the solar system, or a drop of ink

dissolving into a glass of water. In order to study a dynamical system we need a way to

model some quantity x of the system (for instance, the temperature of a cooling object) as

a function of time t. One of the predominant ways to model dynamical systems uses
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differential equations.

dx

dt
= f(x) (1)

A differential equation allows us to relate the rate of change of a quantity with the

quantity itself. These rates of change allow us to iteratively reconstruct the behavior of the

system as a function of time x(t) as shown in Fig 1. We say that a function x = h(t) is a

solution to the differential equation given that it satisfies the differential equation (Stewart,

2016). In some special cases it is possible to derive a closed-form expression for x(t), but

most often this is not the case. In fact, most differential equations cannot be solved

analytically, but are often solved numerically.

Conceptually, dynamical systems can be broken down into two parts - the phase

space, and the dynamics. The phase space is a collection of all states a system could

possibly take on. Each point in the phase space represents a possible state. For instance,

the phase space of a cooling object contains all the possible temperatures the object could

possibly take on. The dynamics of a system are then the rules that take the current state

of the system, and transform it into the state at the next unit in time. In the case of the

cooling object, the dynamics take the current temperature, and output the temperature in

the next unit of time. In other words, the dynamics are described by a function that maps

points in the phase space to other points in the phase space.

Consider an example differential equation describing dynamics of a cooling (or

heating) object:

dT

dt
= −k(T − Ta) (2)

where T is the temperature of the object, k is a constant determining the rate of heat

transfer, and Ta is a control parameter describing the ambient temperature of the

environment. This differential equation tells us that at each point in time the rate of

temperature change for the object is proportional to the difference between the current
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object temperature, and the ambient temperature of the environment, scaled by a constant

k.

Once an initial condition for the state is known or chosen, we can apply the

dynamics to get the state in the next unit of time. We can repeat this process to get a

trajectory - a path of system states given an initial condition. Systems which, given an

initial condition, always produce the same trajectory are called deterministic. There is no

randomness or variation in the process of mapping one state to the next, and so each

simulation under the same initial condition will produce identical behavior each time. If we

want to precisely know the system’s state a thousand time units into the future, we simply

apply the dynamics rule to the current state a thousand times. Figure 1 shows two

example trajectories for an object cooling and heating.

Figure 1

Time-series for the system dT/dt = −k(T − Ta) describing an object cooling and heating. k

= 0.5, dt = 0.01. The blue trajectory has initial condition T = 18, red trajectory has initial

condition T = 24. The dotted line indicates the equilibrium state at T = 20.

Alternatively, systems that exhibit randomness in their dynamics will not produce

identical trajectories for identical initial conditions and are said to be stochastic. Many

phenomena observed in the real-world are stochastic processes. In this case, predicting how

the system will behave in the future becomes much more difficult; we can only make

probabilistic statements about future states at best. Figure 2 shows a single stochastic

trajectory for an object warming to room temperature, and it’s corresponding experimental

probability density function. For simple systems like this, the probability density function,
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over long periods of time, is indicative of where the system state spends the most time, and

therefore what states the system tends to evolve toward.

Figure 2

Top: Stochastic time-series for system dT/dt = −k(T − Ta) + dW (t) describing object

cooling and heating. k = 0.5, dt = 0.01. Notice the dW(t) term which introduces

randomness into the trajectory; W(t) is called a Wiener process and represents idealized

one-dimensional Brownian motion. The red trajectory has initial condition T = 18. The

dotted line indicates the equilibrium state at T = 20. Bottom: Histogram of T, scaled to

approximate the probability density of the system.

Modeling real-world systems in such an abstract way - as points being mapped to

another in a space using rules, can lose a lot of the specialized contextual information of

the real-world system. For instance, our object cooling or warming example system is blind

to various details of the object and it’s environment. This way we are discarding the

non-essential specific details and real-world causes of the dynamics, but gain a generality

that we could apply to other systems (e.g. other objects heating or cooling in other

environments). This abstraction can be useful to study the core features and general

behavior of the system and entire classes of systems. The classification of dynamical

systems is important as it allows us to answer the question of whether two dynamical

systems are equivalent. A bunch of billiard balls colliding on a pool table, a gas of particles
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in a small container, and a group of people moshing in a concert hall might seem like very

different systems, governed by very different dynamics. Quantitatively they are different

(in object size, shape, time scale, and so on), but qualitatively the dynamics of these

systems are governed by the same rules for motion and collision.

An important feature that makes some dynamical systems qualitatively equivalent

is their stability. Notice that in our example of a cooling object, the system tends towards

20 degrees - this is the equilibrium state. Equilibria are found where the derivative of the

differential equation governing the dynamics equals zero.

dT

dt
= −k(T − Ta) = 0 (3)

Equilibria can be stable or unstable. The system state will evolve towards stable

equilibria, and away from unstable equilibria. If an equilibrium point is reached, the system

state will no longer change, unless it is externally perturbed away from the equilibrium.

The form of the differential equation governing the dynamics of the system will therefore

decide the type, location, and number of equilibrium states for that system. In our simple

cooling object example, this is the state where the object’s temperature equals the ambient

temperature, and therefore the rate of temperature change over time is zero. If we vary the

ambient temperature parameter Ta we can examine how the equilibrium of the system

changes correspondingly. For such a simple linear system, the equilibrium will always

simply be the ambient temperature of the surroundings as shown in Figure 1.
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Figure 3

Equilibria for system dT/dt = −k(T − Ta). k = 0.5. The dotted line indicates the

equilibrium state as Ta is varied.

However, systems do not necessarily always have the same equilibrium structure at

all times. In more complicated systems with non-linear dynamics, varying the parameters

in the differential equation can cause not only quantitative, but also qualitative changes in

stability. Equilibrium points can suddenly appear or disappear. A single equilibrium point

can fork into many others. These qualitative changes to system stability and behavior are

called bifurcations. Studying the equilibria and where they bifurcate in a dynamical

system, can provide a global view of the system’s behavior and be much more informative

and generalizeable than just looking at individual trajectories. Moreover, bifurcations can

reveal some surprising results and explain very complex behavior.

Consider, for example, a more complicated dynamical system with a single control

parameter A.

dx

dt
= −(x3 − 0.5x − A) (4)

Figure 4 depicts the equilibria of the system as a function of the parameter A.

Gradual and continuous changes in the control variable A can result in the system state

crossing a bifurcation point, and the behavior of the system changes as a consequence. If

the system had begun at the lower line of equilibrium states and we gradually increase the

parameter A, you’ll notice that an additional two equilibria (one stable and one unstable)
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appear. If we continue increasing A, we reach yet another bifurcation point where the

bottom stable and middle unstable equilibria disappear, and only the top stable

equilibrium remains. Non-linear dynamical systems like this one exhibit hysteresis.

Hysteresis is the dependence of the system state on its history at previous

time-points. Imagine again that the system initially begins on the lower stability sheet

around A = −0.25; increasing A can lead to a slow increase in the value of the equilibrium.

Even when a bifurcation occurs and a second stable equilibrium appears, the system will

remain on the bottom equilibria line until it vanishes, and a catastrophic transition to the

next available equilibrium follows. This is indicated by the blue arrow on the right. In

order to return to the previous lower stability curve, the control variable A has to be

reduced until the stable equilibria of the top sheet vanishes, and the system state plummets

down to the nearest stable equilibrium at the bottom, as indicated by the red line.

Therefore, a sudden transition can occur as a consequence of crossing a bifurcation point

and stability being lost. A transition can also occur given a sufficient perturbation or noise

that would put the state in sufficient proximity of another stable equilibrium.
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Figure 4

Equilibria for example system with dynamics dx
dt

= x3 − 0.5x − A. Stable equilibria are lines

in black; unstable equilibria are dotted gray. Hysteresis in this system can be demonstrated

via the dashed red and blue paths - small and continuous changes in the control parameter

(A) can lead to sudden and large transitions in state x. Where this transition occurs

depends on previous system states. As we increase A, at around A = 0.13 we reach a

bifurcation point; the local equilibrium curve no longer exists and a transition to the next

stable equilibrium on the top fold follows. In order to reverse the transition and return to

the bottom stability fold, notice that A would have to be reduced far more than for the

transition upwards, to around A = -0.13.

Systems like this can also exhibit very different behavior over time with just slight

differences in initial conditions. Consider again the example dynamical system in Figure 4.

The red and blue points in the middle of the graph represent example initial conditions,

both just on either side of an unstable equilibrium. The values are very close together,

however if we let these conditions evolve over time, the system’s behavior will diverge to

different values. This is something that becomes self-evident when studying a system’s

stability and bifurcations, but might not be clear from just looking at individual

trajectories.
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Figure 5

Deterministic time-evolution of dynamical system with identical control parameters and

similar initial conditions shown in Figure 4. The system tends towards the nearest stable

equilibrium points for that value of control parameter A. Note that the control parameter A

remains static over time in this simulation.

Catastrophe Theory

Catastrophe theory (CT) deals with dynamical systems for which the equilibrium

points can be defined as a minimum of a single smooth (differentiable everywhere),

well-defined (unambiguous) potential function V. Such systems are called gradient systems.

The potential function determines the direction and magnitude of the rate of change at

each unit in time, and so decides the system dynamics entirely.

dx

dt
= −dV (x; c)

dx
(5)

In the potential function x is a vector of system state (outcome) variables, and c is a

vector of control variables (independent variables that determine system dynamics). The

control variables are our inputs to the differential equation and determine the quantitative

and qualitative changes in system stability. The form of this differential equation implies

that the system state changes in the direction of decreasing potential at a rate proportional

to the slope of the potential function. As before, we can find the equilibrium points where

the potential function V is equal to zero.

As discussed above, classification of dynamical systems is important to study,
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understand, and generalize dynamical systems. Many dynamical systems have been be

shown to be equivalent, even so however, there are far too many to classify them all. CT is

remarkable in that it allows us to classify gradient systems universally; gradient systems

that have two or fewer state variables, and five or fewer control variables can all be

described by only seven elementary catastrophes or unfoldings. These elementary

catastrophes are geometric structures that describe the equilibria and bifurcations of

gradient systems. Figure 7 is an example of the cusp catastrophe - the equilibrium

landscape for one state variable and two control variables. Each catastrophe comes with

it’s own associated potential function, which are described in Table 1 as presented in

(Zeeman, 1976). Every smooth gradient system’s bifurcation diagram with two control

variables and one outcome variable can be found as a part or a section of the cusp

catastrophe. CT therefore allows us to classify gradient systems with respect to the number

and type of equilibrium points, and also study how the stability of the gradient system

changes in response to control parameters being varied. These geometries of equilibria have

been shown to be invariant to smooth (arbitrarily differentiable) and invertible one-to-one

coordinate transformations (Berlinski, 1978). This means that two gradient systems are

equivalent when one’s potential function can be smoothly transformed into the other’s, and

their behavior will be captured by one of the seven catastrophes in the table below.
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Table 1

The elementary catastrophes

Name Potential First Derivative Control Behavioral

Fold 1
3x3 − αx x2 − α 1 1

Cusp 1
4x4 − 1

2βx2 − αx x3 − βx − α 2 1

Swallowtail 1
5x5 − ax − 1

2βx2 − 1
3cx2 x4 − a − bx − cx2 3 1

Butterfly 1
6x6 − ax − 1

2bx2 − 1
3cx3 − 1

4dx4 x5 − a − bx − cx2 − dx3 4 1

Hyperbolic-umbilic x3 + y3 + ax + by + cxy 3x2 − y2 + a + 2cx; −2xy + b + 2cy 3 2

Elliptic-umbilic x3 − xy2 + ax + by + cx2 + cy2 3x2 + a + cy; 3y2 + b + cx 3 2

Parabolic-umbilic x2y + y4 + ax + by + cx2 + dy2 2xy + a + 2cx; x2 + 4y3 + b + 2dy 4 2

CT provides a mathematical basis for classifying gradient dynamical systems with

respect to the number and type of equilibrium points, number of control variables, and

number of behavioral variables.

The Fold Catastrophe

Consider the simplest of catastrophes; the fold has one control variable α and one

behavioral outcome variable. It is an unfolding of the singularity x3. The potential

function for the fold catastrophe is:

V (x) = 1
3x3 − ax (6)

and the derivate:

V ′(x) = x2 − a (7)



CATASTROPHE THEORY SOCIAL SCIENCES 17

Figure 6

Fold equilibria plane

When α < 0 the system has two stability points - one stable, and one unstable. At

α = 0 is where the stable and unstable equilibria meet and annihilate - the bifurcation

point. At α > 0 the system has no stable equilibrium. The fold catastrophe has been used

to explain various physical phenomena, for instance, in analyzing tensile cracking and

sliding rockburst instability (Wei et al., 2021).

The Cusp Catastrophe

The cusp catastrophe is an extension of the fold along a new control dimension,

having one behavioral variable and two control variables - α and β. In the cusp catastrophe

α is also often called the normal or asymmetry coordinate, as varying along it determines

the direction and skew of the probability density function. Coordinate β is also often called

the bifurcation or splitting coordinate as it determines the number of modes in the

probability density function. The cusp catastrophe is shown in Figure 7. The canonical

form of the potential function for the cusp is:

V (x; α, β) = −(αx + 1
2βx2 − 1

4x4) (8)

and so the critical points can be found where

V ′(x; α, β) = −(α + βx − x3) = 0 (9)
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Figure 7

Cusp equilibria surface

As can be seen in Figure 7, the equilibrium surface of the cusp has one or three

equilibria for all combinations of α and β. The plane at the bottom is called the control

surface, and the blue lines indicate the boundary of the bifurcation region - where multiple

equilibria meet and annihilate into one. This boundary is defined as Cardan’s

Discriminant:

δ = 27α2 − 4β3 (10)

δ = 0 marks the boundary of the bifurcation set. When δ > 0 the potential function

has three equilibria, and when δ < 0 it has one.

All equilibria outside the bifurcation region are stable, whereas the maxima of the

three equilibria within the bifurcation region are unstable - corresponding to the inner fold

of the cusp. In a deterministic model any slight perturbation from this state would send

the system towards one of the other equilibria. In a stochastic model (with noise) the

unstable middle fold can be interpreted as the neighborhood the system state will spend
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the least time in.

The deterministic cusp time dynamics are described by the ordinary differential

equation:

dx

dt
= α + βx − x3 (11)

Stochastic Cusp Catastrophe

Many real-world phenomena are not deterministic, but stochastic. In order to fit

data with noise and random perturbations on to a cusp model an approach that accounts

for this noise and perturbations is required.

There are two complementary approaches to fitting data to a catastrophe model.

The first is an identification of qualitative flags proposed by Gilmore (1993). An example

of such a flag is anomalous variance, where an increase in variance that occurs in the

neighborhood of the bifurcation set, until a new plateau is reached. Finding such flags in

the data can be an indication that the data may be described by a cusp (or a higher order

catastrophe) model, but shouldn’t be treated as conclusive evidence for it. The qualitative

nature of these flags has rightfully been criticized as unrigorous; such flags should be at

best used as heuristics to identify potentially suitable data. The second approach involves

more rigorous quantitative fitting techniques - a brief overview of these are reviewed in this

section.

Quantitative Fitting Techniques

Techniques to fit data to stochastic catastrophes are not trivial endeavors; known

attempts are summarized below.

GEMCAT (Oliva et al., 1987) was introduced as a fitting technique that

incorporated multivariate data and latent construct variables. GEMCAT, however, has a

grievous issue - namely its inability to distinguish between stable and unstable equilibria

(A. Hartelman, 1998).

Guastello’s regression technique was an attempt to apply the cusp and
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butterfly catastrophes to drug addiction and work performance (Guastello, 1984) and

academic performance (Guastello, 1987) data, among others. Alexander et al. (1992) have

shown however, that Guastello’s approach could not distinguish catastrophe data from

random data. Guastello’s technique also suffers from the same drawback of GEMCAT - it

does not discriminate between the minima (stable equilibria) and maxima (unstable

equilibria) of the potential function.

Therefore, both GEMCAT and Guastello’s regression technique cannot be

considered robust formulations of stochastic CT in their original form. The most robust

and widely accepted stochastic formulation of CT without these issues was introduced by

Cobb (1978, 1981, 2010) and (Cobb et al., 1983) across a series of papers.

Cobb’s Method: To incorporate measurement error and noise in real-world data,

Cobb used the results of Ito’s stochastic calculus to include a white noise Wiener process

dW with variance σ in the deterministic catastrophe. The system dynamics are then

described by a stochastic differential equation:

dx = (−V ′(x; c)
dx

)dt + σdW, (12)

where in the case of the cusp, V is defined by equation 8. The −dV (x; c)/dx component is

called the drift function, the σ(x, t) is called the diffusion function, and W(t) is a Wiener

process (idealized Brownian motion). The solution to equation 12 is a random variable, the

probability density of which satisfies the Fokker-Planck equation (Pavliotis, 2014). The

Fokker-Planck equation describes the evolution of the probability density function over

time for a stochastic dynamical system. It can be shown then that with −V ′(x) and σ(x, t)

independent of x and t the associated theoretical stationary density is:

p(x) = ϕ
B

σ2 exp(− 2
σ2 V (x)), (13)

where ϕ is a normalization constant. As can be seen in Figure 8, under the assumption of

additive noise the modes of the stationary density function correspond to stable equilibria,



CATASTROPHE THEORY SOCIAL SCIENCES 21

whereas the antimodes correspond to unstable equilibria. Figure 9 shows a more global

overview of how varying control parameters α β and diffusion σ influence the probability

density.

Figure 8

Solution to the stationary Fokker-Planck equation for α = 0.5 β = 4 σ = 2 for the potential

function of the cusp. Black dashed lines indicate stable equilibria, silver dotted line

indicates unstable equilibrium.

In ordinary regression the predicted value is equal to the expected value of the

dependent variable given values of independent variables. Consider a linear regression; the

model predicts a single value along the fitted line, with some normally distributed error

around such a value. The cusp is not a regular regression model as for certain combinations

of α and β (inside the bifurcation region) the system has multiple stable states. This

means that the model prediction is not a single value, but a range of values with a bimodal

probability density as shown in Figure 8. Therefore, if it is necessary to derive a single

value, a convention to select such expected values needs to be adopted. There are two

conventions at philosophical extremes:

• Delay convention: Choose the mode of the probability density closest to the

current state as the predicted value. Cobb (1981) recommends this convention and

(Grasman et al., 2009) implement this as the default in their software package.

• Maxwell convention: Choose the mode at which the probability density is highest.
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Both conventions are valid, and can be chosen by the researcher depending on

theoretical reasons. The delay convention predicts the mode of the density closest to the

current state, e.g. the value that the current state is most likely to converge to in the near

future. The Maxwell convention predicts the mode of the density with the highest

probability, e.g. where the long-run system state spends the most time in.

Figure 9

Probability densities for the cusp (1) α = 0, σ = 2; (2) α = 0, σ = 4; (3) α = 0.5, σ = 2.

Increasing σ distributes the density across a wider range of values. Varying β can cause a

bifurcation. Varying α determines the relative density of the two modes in a bifurcation.

Grasman et al. (2009) published a package in the statistical software R that

implements Cobb’s method, augmented with the multivariate technique of Oliva et al.

(1987) which allows for a set of dependent variables to be embedded into a single control

variable as a linear combination. In addition the package implements the suggestions and

improvements of A. Hartelman (1998) to make the algorithm more robust. However, it is

only suitable for cross-sectional data.

Grasman’s package makes the assumption that the control and state variables

observed in the data are unknown smooth transformations of the canonical control and

state variables. In particular, the package assumes the simplest and most straightforward

case - that this transformation between observed and canonical units is a linear one. To

understand this, one can imagine recording data from a cusp that is stretched and warped -
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the upper and lower folds could slope much more drastically, but the underlying bifurcation

structure and qualitative system behavior remains the same. The package therefore

attempts to find the linear coefficients that would transform the observed variables

(stretched under some unknown transformation) into canonical ones.

Assuming the data is appropriate for a cusp model and the fitting procedure

retrieves the correct linear coefficients, we can use these coefficients to transform the data

into canonical units and apply the Maxwell or Delay conventions to make long-run

predictions. We can also use these coefficients, by inverting the line equation to express, for

instance, Cardan’s discriminant in the original units. This would give us the boundary of

the fitted bifurcation area in the original units. This information could, assuming a valid

model, be used to predict and make statements about critical transitions and hysteresis in

the system.

Example Stochastic Cusp Model Fit

This section introduces a sample fitting procedure for the cusp using simulated

data. The data have intentionally been made highly noisy to demonstrate what results can

be expected with real-world data.

Generating Sample Cusp Data

In order to generate 100 cross-sectional observations, 100 points are uniformly

sampled at random from the cusp control plane in the range −2 < α < 2 and −2 < β < 2.

Each sampled point is given an initial condition x0. Each α, β, x0 triplet serves as an initial

condition for stochastic differential equation 12 and is allowed to evolve over time for 500

time-steps with σ = 1 and dt = 0.01 creating 100 trajectories in time-series. For each

trajectory the initial condition x0 is set equal to the stable equilibrium point for current

α, β perturbed by a small random amount when there is only one equilibrium (i.e. the

point begins outside of the bifurcation area), and the unstable equilibrium perturbed by a

small random amount when there are three equilibria. At each time step the control

parameters α and β for each trajectory are randomly perturbed by a small amount (i.e. the
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points are walking randomly along the cusp surface). An example trajectory for a single

initial condition is illustrated in Figure 10.

Figure 10

Left: Sample trajectory with initial condition α = 0.3, β = 1 and x0 equal to the

corresponding unstable equilibrium perturbed slightly. Right: random walk path taken on the

control surface. The α, β, and y are recorded at the final time-step yielding a single

cross-sectional observation.

Finally, we sample the α, β and final state x at the end of each trajectory to yield

100 cross-sectional observations. The final data-set can be seen in Figure 11 and found in

Appendix A.

Fitting Sample Data Using Cobb’s Method

As seen in Figure 10 the time-series of each trajectory can show sudden transitions

due to stability loss or noise perturbing the system state sufficiently close enough to

another equilibrium. However, as mentioned above, Cobb’s method does not allow us to

say anything about these intra-individual differences or individual time-dependent

evolution. Instead, we capture a cross-section of each trajectory and make the assumption

that the underlying system dynamics are the same for each sampled point.

We now use the R package ’cusp’ (Grasman et al., 2009) to fit the sample dataset to

the cusp catastrophe, yielding the coefficients in table 2, and model comparison statistics in
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Figure 11

Sample noisy cross-sectional dataset (Appendix A) generated from the cusp, with an overlay

of the cusp surface.

table 3.

Table 2 provides linear coefficients to transform observed control variables α and β

into canonical coordinates, and behavioral variable y into the the corresponding location

and scale. Notice that some coefficients are not significant - this is expected as we did not

add units (i.e. we didn’t transform the location and scale of the observations). Figure 12

shows the original data in figure 11 transformed into canonical variables using the

coefficients found by the fitting procedure in table 2.

Table 3 provides model comparison statistics. The R2 value is in fact a pseudo − R2

statistic that can become negative (due to the relative skew of the density) and should not

be compared to the R2 statistics in regular regression models. The pseudo − R2 is difficult

to interpret, therefore it is preferable to select models using log-likelihood, AIC, and BIC

(Grasman et al., 2009). The log-likelihood, AIC, and BIC all indicate the cusp as the best

model to explain the given data.
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Table 2

Fitted coefficients

Estimate Std. Error z-score p-value

a[(Int)] 0.13986 0.12574 1.112 0.26601

a[a] 0.46657 0.15085 3.093 0.00198 **

b[(Int)] 0.20614 0.47138 0.437 0.66189

b[b] 1.61273 0.27619 5.839 5.24e-09 ***

w[(Int)] 0.10133 0.08026 1.262 0.20678

w[y] 1.17482 0.07992 14.700 < 2e-16 ***

Table 3

Model comparison

R.Squared logLik npar AIC AICc BIC

Linear model 0.1907656 -127.0183 4 262.0365 262.4576 272.4572

Logist model 0.1856229 -127.3350 5 264.6700 265.3083 277.6959

Cusp model 0.6523225 -109.5451 6 231.0902 231.9934 246.7212

Inference

The fitting procedure has attempted to find the linear transformation that would

transform the observed control coordinates α, β and behavioral variable x into canonical
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Figure 12

Original sample dataset transformed into estimated canonical units using linear coefficients

retrieved via Cobb’s method. The location and scale of the data are a slightly off from the

original data (see Figure 11). This is not surprising as the noise level during sampling was

very high given the scale of α and β.

units. Finally, with the data transformed into canonical units we use the Delay convention

to predict the long-run most-likely state for each of the cross-sectional points. As discussed

above, the delay convention selects the mode of the probability density closest to the

current state. Figure 13 shows the cusp regression predictions for the sample dataset. The

prediction outputs the converged long-run most likely value for the α, β and y the

cross-sectional point was observed at, which will coincide with an equilibrium on the cusp

surface.

Since we sampled the data from the cusp, we can compare the ground truth values

to model estimates. Figure 14 shows how well the fitted model classifies the observations as

inside or outside of the bifurcation area.

Working strictly with cross-sectional data creates strong assumptions and

limitations. Firstly, we must assume that each observation is governed by the same cusp
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Figure 13

Predicted values of cusp regression using the delay convention. Each data point is assumed

to have converged to the closest mode of the probability density.

dynamics (i.e. the potential function or cusp surface does not substantially differ for

individual observations). Therefore the model always reflects between-individual behavior;

the individuals are assumed to behave homogeneously. Secondly, because this cusp

regression is time independent and cannot capture individual dynamics, inference and

interpretation is limited. The regression selects the most likely long-run converged value

(depending on chosen convention) only for the current provided α, β and y values.

Therefore, we cannot make any statements or predictions that involve time. It is difficult

to think of situations outside of the physical sciences and particularly in the social sciences

where such predictions would be meaningful or useful.

Applications of the Stochastic Cusp

Stochastic CT has seen various application attempts: in modeling the trade-off

between speed an accuracy in reaction time experiments (Dutilh et al., 2011), crash rates

in urban arterial roads (Park & Abdel-Aty, 2011), withdrawal in construction project
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Figure 14

Left: the control surface with the ground truth bifurcation boundary. Right: the bifurcation

boundary from the perspective of the fitted model. Large points are the ground truth, small

points are model predictions. Green indicates the datapoint being inside the bifurcation

area, red indicates the point being outside of it. Therefore, small and large points that have

the same color indicate correct classification by the model, and vice versa.

negotiations (P. T. Chow et al., 2012), cheating behavior in students with learning

disabilities (Sideridis & Stamovlasis, 2014), sudden transition of the housing market in

Poland (Bełej & Kulesza, 2013), driver aggression in freeway traffic (Papacharalampous &

Vlahogianni, 2014), grip strength (D. G. D. Chen et al., 2014), and absenteeism in

firefighter teams (Marques-Quinteiro et al., 2020).

Current social science applications tend to have one or more of the following

limitations. First, low sample sizes. Hartelman’s (P. A. I. Hartelman et al., 1998)

simulations show it takes hundreds of observations to reliably recover the parameters using

Cobb’s method. Even with sufficient sample sizes, Hartelman demonstrates that estimators

are biased. Unfortunately, publications often have inexcusably low sample sizes. Second,

indirectly observed variables with convoluted ad-hoc operationalization, arbitrary scalings,

magic numbers and arbitrary exclusion criteria. Many variables of interest in the social

sciences are not directly observable and / or difficult to quantify; however, variable
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construction should be grounded in theory and carefully explained. Third, using time-series

data to fit a cusp model using Cobb’s method. As discussed above, Cobb’s method is not

suitable for time-series data and in the overwhelming majority of cases the model will fail

to converge properly with longitudinal or time-series data. This is due to the difficulty of

obtaining a time-dependent solution for stochastic differential equation 12. Therefore,

intra-individual differences and transitions can not be modeled using Cobb’s method in it’s

current form. Fourth, only comparing cusp model fit to linear model fit, when comparison

to a logistic model is available. Comparing a fitted cusp model to a logistic model is

important, as the logistic model can approximate arbitrarily steep transitions, but can not

explain hysteresis. If the data contains steep or discontinuous transitions, the cusp will

almost always be selected over the linear model, but that does not guarantee that a cusp

model is in fact the best explanation of the data. The logistic model is an important

intermediary step. Fifth, disappointingly limited conclusions, e.g. ’phenomena x is

explained by the cusp’. The overwhelming majority of papers outside of engineering and

physical applications seem to stop at model fit comparisons, just short of making any

quantitative predictions or guidelines for real-world utility. Finally, sixth - concluding that

the data are better explained by the cusp model (given all the above points) when the AIC

and BIC beat linear and logistic models by just a few points.

Discussion

Despite being the standard approach, Cobb’s method comes with obstacles and

limitations that are important to recognize before attempting to fit or interpret a cusp

model in a social science context.

Current easily accessible implementations of Cobb’s method are only suitable for

cross-sectional data and cannot be applied to time-series or longitudinal data, leaving out

the heart of the dynamical systems approach. Unfortunately, this fact hasn’t stopped some

researchers from attempting to fit time-series data to the cusp using this approach anyway.

Cobb’s method makes the assumption that the control and state variables are
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continuous. In the social sciences variables are often measured in Likert-scales, and similar

ordinal measures; Grasman et al. (2009) appropriately handle and provide an example

where they fit the model on ordinal data, but the potential consequences of ignoring this

assumption have not yet been discussed critically. Of course, where true continuous data is

unavailable, ordinal data are better than nothing, but caution should be exercised.

Using simulated data (sampled directly from the cusp) we found that the fitting

procedure recovers the parameters reasonably well when the cross-sectional data are rather

uniformly distributed around the origin of the control surface (or on one side of a = 0 on

the control plane) and the noise is not too high. However, the fit can sometimes

inexplicably converge to very different and incorrect solutions, particularly (but not

necessarily) when the data show a less uniform pattern or are patchy. Before the fit, the

researcher must select initial parameter values, which can yield very different converged

solutions depending on this choice. In some cases, even providing the correct proximal

starting values in a high sample size generated dataset will not help the fitting procedure

converge to a correct or even sensible solution. Given that the control variables are often in

practice chosen ad-hoc and the model is itself not very transparent, this places a burden on

the researcher to carefully evaluate whether the fitted model has converged somewhat

correctly.

Because time does not play any role in the fitted model, the predicted value(s), in

most cases, have very limited utility and interpretation. The predicted values make the

assumption that the observation has converged to the most likely state (the most likely

equilibrium decided by applying the Maxwell, or Delay conventions). As time is not

involved, it’s difficult to interpret what such a prediction means or how and if it can be

effectively used in, for instance, clinical applications.

Catastrophe models were popularized using intuitive, conceptual dynamical systems

examples demonstrating sudden behavioral transitions (such as fear and rage in dogs)

along with the promise of anticipating these transitions. However, currently available
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methodology cannot deal with (noisy and difficult to measure) time-series or longitudinal

data. Therefore, the intuitive conceptual examples on which CT became popular cannot, in

most cases, be implemented in practice given current limitations. Moreover, the necessary

time investment for a social scientist to sufficiently understand stochastic catastrophe

theory and it’s current methodological nuances is high, therefore the chance of

misunderstandings is also high. A combination of ’researcher degrees of freedom’ and

current methodological limitations make the rigorous application of stochastic catastrophe

theory a difficult and a niche case in the social sciences.

This does not imply that catastrophe theory or the discussed methodology do not

have a place in social science applications. On the contrary, CT is a powerful, very

promising tool that with careful application can explain otherwise impossible to model

phenomena. In large part, the issues of successful application lie in data-model fit.

The usage of catastrophe models in the social sciences would benefit from a better

understanding of current methodological limitations and a systematic way of handling

data, fitting the model, checking model validity, comparing competing models, and

predicting outcomes. There is an explanatory gap between the observed data and fitted

(time-independent) model predictions that needs to be filled. In addition, methodological

developments that could accommodate time-series and longitudinal data in a way that is

approachable to most researchers would target far more social science applications and

offer more utility. This is a difficult problem, but promising work is being done.

S. M. Chow et al. (2015) have attempted to accommodate longitudinal data using mixed

structural equation modeling with regime switching (MSEM-RS) in a way that mimics the

rudimentary features of the cusp catastrophe. However, the relationship of this approach to

catastrophe theory is only inspirational, and comes with it’s own list of assumptions and

limitations. D. G. Chen et al. (2021) propose a novel way of using Bayesian inference to

estimate parameters in the cusp.

In current form, many attempts to apply catastrophe theory to the social sciences
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are of limited scope, difficult to interpret, don’t explicitly make predictions, and are

unlikely to replicate.

This thesis comes with a set of limitations. Firstly, the lack of author expertise on

the subject. Secondly, the pool of catastrophe theory applications in the social sciences is

relatively small and is overshadowed by applications in the physical and financial sciences.

In addition, these few application attempts usually involve very specific and niche

behavioral phenomena. It is therefore difficult to judge the ability of current CT

methodology to generate replicable predictions on large and rich datasets in a clinical

context. Finally, this thesis highlights common issues, misconceptions, and limitations, but

does not propose a solution to overcome them.
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Appendix A: Sample Generated Cross-sectional Cusp Data

alpha beta y

0 0.743680453 -0.26557761 -0.228586503

1 0.925098921 0.864681717 1.114504518

2 0.863389794 1.302246092 -1.061078475

3 0.297221947 0.460233727 0.70660262

4 -0.288797784 0.591443555 -1.191545742

5 0.690171896 0.081943274 -0.425020859

6 0.891217086 -0.239812509 0.931980734

7 0.347715786 -0.278547959 0.721643075

8 -0.08545891 0.447445998 -0.080316885

9 -0.103262127 1.168512129 0.901632645

10 -0.240001212 -0.587280559 -0.120793827

11 -0.321769694 0.067438715 0.725434368

12 -0.574187634 -0.188028111 -0.526230606

13 -1.270300022 0.710399074 -1.218059711

14 0.48785604 0.38093078 -0.893831117

15 -0.610154449 1.295293043 1.006899578

16 0.663705725 0.889074643 1.609691984

17 -0.130448567 0.760067088 -1.298423837

18 0.687085126 0.619153977 0.863111082

19 0.854071996 2.017448108 -1.623526637

20 0.048897397 1.220324963 -0.318258029

21 0.559103949 0.386385281 0.298283914

22 1.960181129 1.94020396 1.739759952

23 0.158172816 0.942577231 1.781236588

24 -0.253631459 0.922115742 -1.188658204

25 0.075202755 0.59932144 -0.731899155

26 0.007861049 -0.090356996 -0.538429251

27 0.749386939 0.538942854 0.937453259

28 1.016343286 -0.490250883 0.596220037

29 -0.488854341 -0.055086542 -1.006923887

30 -1.098476435 0.806895456 0.823107093

31 -0.304233505 -0.628883401 -0.572315383

32 1.050949844 1.421706032 1.192081885

33 1.162743854 -0.376477761 -0.772543075

34 -0.837537604 1.837904311 -0.35160397

35 -0.731403576 -0.170299578 0.789888773

36 0.297960696 -0.354898178 -0.210551834

37 -1.537978149 1.390726207 -1.389312333

38 1.013472663 0.479738136 0.527822507

39 0.845873212 0.928497496 0.88476264

40 1.034473312 1.443515171 -1.296251016

41 -0.369195921 -0.169100996 -0.991357758

42 -0.727274876 -0.221787101 -0.587471848

43 -0.706116804 -0.511052459 1.041191492

44 0.030989332 1.268742775 -0.996092397

45 -1.0654763 -0.354220559 -0.802997765
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46 -0.120352867 -0.206472456 0.483286619

47 1.104461512 0.554986647 0.659984073

48 0.518033708 0.439026778 1.525857156

49 -0.704872337 0.608211572 -0.386132167

50 -0.264983244 -0.523749822 -0.78580599

51 -0.015129788 -0.607898811 -0.530247664

52 0.032356676 1.337589197 1.92666942

53 -0.347627763 1.946191801 1.424525292

54 -0.214971635 -0.255326489 -0.188322203

55 -0.465093267 1.645456365 1.542704126

56 0.103119012 0.177282906 0.641664956

57 -0.17649139 -1.674367035 -0.104352856

58 1.130148524 0.069203374 1.017127875

59 0.816090159 0.612415389 0.881004513

60 0.524751192 0.003747898 -0.274186533

61 -0.26231568 1.688191093 -0.616097598

62 -0.255095447 -0.28714583 -0.967221498

63 -0.437972886 1.100616982 0.76960351

64 -1.858061508 0.241033276 -0.864336873

65 -0.217326342 0.703716008 -0.333082784

66 -0.914108014 1.096274836 -1.482123556

67 0.840130645 0.574911357 0.789384002

68 -2.064906427 0.136660349 -0.403235083

69 0.069288384 0.65714621 0.380386418

70 0.758325371 -0.377206953 0.379237003

71 0.315060522 2.214374162 0.599670721

72 0.157734519 -0.605167813 -0.647606378

73 1.926751905 1.067522934 1.462059069

74 -0.374286654 1.571005657 1.287845731

75 0.79809118 0.161520862 0.123993651

76 1.198988904 -0.551727493 -0.590889517

77 1.111572272 1.010735124 -0.88205547

78 -0.439479288 -0.896537482 -0.117084071

79 -1.310349957 0.8109599 -1.950087213

80 -0.644842972 0.844278604 -1.580881994

81 -1.522422881 0.362140147 -1.49940408

82 -0.323432245 0.73682651 0.36544752

83 0.193868818 -1.22813445 -0.349925892

84 -0.416367416 -0.560268889 0.936655132

85 0.010551326 1.727894294 1.507437579

86 -0.079354863 1.902485084 1.427416325

87 -0.412948268 1.127981506 1.338459368

88 -0.640502737 -0.083421339 -0.335441256

89 0.744596824 0.178127394 0.506602698

90 0.112515767 0.978012625 0.945318185

91 -0.229079864 0.575206468 -0.019738865

92 -0.526549881 -0.364030922 -0.569051776

93 0.546130341 2.031748681 1.374843669

94 0.698817101 1.341670343 0.602336027

95 0.523002259 -1.272968543 -1.104635392

96 -0.378868949 -0.03962228 -0.743599222

97 0.344601798 1.502829874 1.635724517

98 0.665913807 -0.727264191 -0.139660154

99 -0.581607413 0.054602164 -0.254823906
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