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Abstract 

This study examined how socioeconomic status (SES) relates to intelligence across childhood and adolescence, 

using data modeled after the Dutch norming sample for the Intelligence and Development Scales–2 (IDS-2). A 

total of 1,372 participants aged 5 to 20 were included in the analysis. Generalized Additive Models for Location, 

Scale, and Shape (GAMLSS) were used to investigate developmental trajectories and distributional differences 

in general intelligence (G), fluid intelligence (Gf), and crystallized intelligence (Gc). Results showed that 

children from higher SES backgrounds consistently scored higher in all intelligence domains. SES tended to 

widen with age, particularly for the lower-performing children. In contrast, SES gaps narrowed at higher 

performance levels, suggesting that high-performing children may be less affected by SES constraints. Due to 

methodological limitations, differences in SES effects between Gf and Gc could not be directly compared. These 

findings underscore the need to consider SES when interpreting intelligence test scores and raise concerns about 

the fairness of cognitive assessments in socioeconomically diverse populations. 
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Socioeconomic Status and Intelligence in Dutch Children 

 Intelligence testing has played a central role in psychology and society for over a century. The first 

widely recognized intelligence test, the Binet-Simon Intelligence Scale, was developed by Alfred Binet and 

Theodore Simon (1905) to identify children with cognitive impairments. Since then, intelligence tests have 

evolved significantly. During World War I intelligence tests gained traction as they were used to assess military 

recruits (Boake, 2002; Wasserman, 2018). Today, intelligence tests are widely used in various domains, 

including personnel selection (Ghiselli & Brown, 1948; Ree & Earles, 1992; Salgado, 2017), healthcare (Decker 

et al., 2012), and education. In educational settings, intelligence tests serve multiple purposes: they aid in 

diagnostic classification (e.g., identifying intellectual impairment or learning disabilities), assessing giftedness, 

and informing appropriate interventions for children (Farmer & Floyd, 2018; Flanagan et al., 2018; McIntosh et 

al., 2018). They are also used in school career decisions. Standardized aptitude assessments such as the Centraal 

Instituut voor Toetsontwikkeling (CITO) in the Netherlands (Cito, n.d.), and the Scholastic Assessment Test 

(SAT) in the United States (College Board, n.d.) are routinely used for college and university admissions. In the 

Netherlands, IQ scores are also used to assess whether a person with an intellectual disability qualifies to receive 

permanent care under Dutch legislation (van Hoogdalem & Bosman, 2024). Importantly, intelligence test scores 

obtained in childhood have been shown to predict various important life outcomes, such as educational 

achievement, occupational status, income, and health (Batty et al., 2007; Deary et al., 2007; Gottfredson & 

Deary, 2004; Strenze, 2007). As a result, intelligence is one of the most frequently measured constructs in 

psychology (Goldstein et al., 2015) and test outcomes can have lasting impact on an individual’s life 

opportunities and life outcomes. 

 Many modern intelligence tests are based on the concept of general intelligence, or g, a single 

underlying cognitive ability that influences performance across a wide variety of mental tasks (Spearman, 1904). 

According to Spearman’s theory, individuals who perform well in one cognitive domain (e.g. verbal reasoning), 

tend to perform well in others (e.g. spatial reasoning), suggesting the existence of a general cognitive factor. The 

Cattel-Horn-Carroll (CHC) model of intelligence builds on this idea of general intelligence (G). It integrates two 

earlier theoretical frameworks: Cattell and Horn’s theory of fluid and crystallized intelligence and Carroll’s 

three-stratum theory of cognitive abilities. (Cattell, 1971; Euler et al., 2023; Flanagan & Dixon, 2014; Horn & 

Blankson, 2012). The CHC model proposes that general intelligence (G) consists of multiple cognitive abilities: 

fluid intelligence (Gf) which involves inductive and deductive reasoning and is shaped by both biological and 

environmental factors, and crystallized intelligence (Gc) which includes acquired skills and knowledge, visual 
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processing (Gv), short-term memory (Gsm), long-term memory (Glm), processing speed (Gs), auditory 

processing (Ga), and quantitative knowledge (Gn) (Cattell, 1971; Euler et al., 2023; Flanagan & Dixon, 2014; 

Horn & Blankson, 2012). The Three-Stratum Theory is based on an analysis of over 460 cognitive abilities and 

states that factors and abilities can be grouped into three strata: narrow (stratum I), broad (stratum II), and 

general (stratum III). The different cognitive abilities identified by Cattell and Horn can be translated into the 

broad stratum (Carroll, 1997; Cattell, 1971; Euler et al., 2023; Flanagan & Dixon, 2014; Horn & Blankson, 

2012). This model forms the theoretical foundation for many widely used intelligence tests today (Sternberg, 

2022). 

Historically and in contemporary practice, intelligence tests are often interpreted as measures of a 

person’s potential (Kamphaus, 2005). In this context, potential refers to a person’s capacity to acquire 

knowledge, solve problems, and adapt to new situations in the future rather than simply reflecting their current 

abilities or learned skills. However, despite advances in theory and measurement, concerns about the fairness of 

intelligence tests remain, in particular in relation to socioeconomic status (SES). Binet himself acknowledged 

early on that environmental factors like SES could affect test performance (Binet & Simon, 1916). 

Contemporary research supports these concerns. It has shown that children from lower-SES backgrounds tend to 

score lower on intelligence tests than children from a higher-SES household (Molfese et al., 1997; Strenze, 2007; 

von Stumm & Plomin, 2015). Von Stumm and Plomin (2015) not only report lower intelligence test performance 

in early childhood among low SES children, but also suggest that SES has a cumulative impact on cognitive 

development over time. These differences may reflect differences in access to enriching educational 

environments, language exposure, and cognitive stimulation (Hackman et al., 2010). Additional research shows 

that both Gf and Gc are influenced by SES but Gc tends to be more strongly affected due to its reliance on 

environmental exposure and educational access (Anum, 2022; Rinderman et al., 2010). 

 These findings suggest that intelligence tests do not simply measure cognitive potential; they also 

reflect environmental influences like SES. This raises important questions about fairness, especially in situations 

where test results are used to make life-changing decisions and can influence an individual’s life outcomes. If 

performance on these tests is shaped by differences in access to quality education, learning materials, or 

stimulating home environments, then children from lower SES backgrounds may be placed at a disadvantage 

through no fault of their own. 

 Given how widely intelligence tests are used, and the weight they carry in educational and social 

decision-making, it’s crucial to better understand how SES affects test outcomes. This study aims to investigate 
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the relationship between SES and intelligence test scores in greater detail by applying generalized additive 

models for location, scale, and shape (GAMLSS). These models allow for more flexible estimation of not just 

average differences, but also variability and distributional changes across SES groups. Notably, GAMLSS is also 

used in the norming procedure of the intelligence test used in this study, which makes it especially suitable. We 

specifically examine general intelligence (G), fluid intelligence (Gf), and crystallized intelligence (Gc). This 

distinction allows for a more nuanced understanding of how different components of intelligence are influenced 

by socioeconomic factors. First, we expect that children from higher SES backgrounds will score higher on 

intelligence tests than those from lower SES backgrounds. Second, we hypothesize that the gap in intelligence 

scores between SES levels will increase with age, reflecting cumulative effects. Lastly, we hypothesize that both 

fluid (Gf) and crystallized (Gc) intelligence will increase with SES, but Gc will show a stronger association. 

Method 

All statistical analyses were conducted using RStudio (Version 2024.12.1, Build 563) and IBM SPSS 

Statistics (Version 29.0.1.0, Build 171). In R, analyses and data cleaning were performed using the following 

packages: dplyr (Wickham et al., 2023), tidyr (Wickham et al., 2023), lubridate (Spinu et al., 2023), gamlss 

(Stasinopoulos et al., 2017), haven (Wickham & Miller, 2023), and ggplot2 (Wickham, 2016) for data 

visualization. 

Participants 

 The data used in this study are from a Dutch sample which was initially collected to norm the 

Intelligence and Development Scales 2 (IDS-2; Grob et al., 2018). For the current study mock data were used 

which behaves like real data. A total of 1,663 participants completed the IDS-2 on site in a controlled 

environment. Of these, 51.3% (n = 853) were female, 47.6% (n = 791) were male, and 1.1% (n = 19) did not 

report their gender. The sample had an average age of 12.1 years (SD = 4.5) and ranged from 4.4 to 21.9 years, 

except for one outlier with a negative age (-0.82). 

From the initial sample, 187 were excluded due to missing values for either the education of their 

mother, or one or more of the IDS-2 subtest scores. An additional 23 participants were excluded because their 

mother’s education was classified as ‘other’. Given that the IDS-2 is designed for children with ages 5-20 years 

(Grieder et al., 2023), 42 participants whose ages fell outside this range were excluded. Lastly, 30 participants 

were removed for having subtest scores that exceeded the maximum values specified by the IDS-2. After 

removing these participants, the final sample consisted of 1,372 participants. 

Measures 
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Intelligence 

Intelligence was assessed using the IDS-2 intelligence domain which consists of seven broad abilities: 

visual processing, long-term memory, processing speed, auditory short-term memory, visual short-term memory, 

abstract reasoning, and verbal reasoning. Composite scores were calculated for overall intelligence (G), fluid 

intelligence (Gf), and crystallized intelligence (Gc). The results from the IDS-2 can be found in Table 1. 

 Although IDS-2 primarily assesses Gf through abstract reasoning and Gc through verbal reasoning, 

additional subtests also contribute to these constructs. In the subtests for the visual processing domain, 

participants were asked to reconstruct geometric figures using squares, triangles, and circles, which requires 

working memory. Working memory is considered a predictor for Gf (Colom et al., 2015; Martinez, 2019; 

Salthouse & Pink, 2008). Furthermore, in a subtest of the short-term memory domain, participants have to 

memorize figures and rotated versions of these figures, which also involves working memory. Because of this, 

along with the abstract thinking subtest, we included the visual processing subtests and the rotated figures subtest 

in the measurement of Gf. Similarly, long-term memory directly influences Gc (Martinez, 2019) and therefore, 

in addition to verbal reasoning, we have also included the long-term memory subtests in the measurement of Gc. 

Scores from each subtest were scaled from 0 to 100, taking into account age-dependent maximum values, to 

ensure equal contribution of the subtests to the composite scores. 

 To assess robustness, we compared results based on alternative subtest groupings for Gf and Gc. This 

allowed us to examine whether the findings were sensitive to the specific subtests selected to represent each 

construct. 

Table 1 

IDS-2 Test scores (N=1372) 

Scores per subdomain scaled, M (SD)   

   Visual processing1 52.38 (12.92) 

      Copy figure 50.53 (16.11) 

      Copy circles 54.21 (16.83) 

   Long-term memory2 56.41 (15.85) 

      Story retelling 54.72 (18.19) 

      Describing picture 58.10 (18.30) 

   Processing speed 51.91 (13.24) 

      Cross out two features 44.64 (13.76) 

      Cross out figure 59.20 (14.67) 

   Auditory short-term memory   

      Repeating number- and letter sequences 50.71 (12.53) 

   Visual spatial short-term memory 32.98 (11.13) 

      Recognizing figures 34.36 (12.47) 
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      Recognizing rotated figures1 31.60 (11.96) 

   Abstract reasoning1 44.28 (15.00) 

      Reasoning matrices  39.14 (16.69) 

      Recognizing different pictures 49.43 (16.90) 

   Verbal reasoning2 54.69 (16.24) 

      Naming categories 55.67 (18.43) 

      Naming contradictions 53.71 (15.44) 

Total scores scaled, M (SD)   

   G 49.05 (11.31) 

   Gf 46.97 (11.28) 

   Gc 55.55 (14.57) 

Note. Superscript numbers indicate the domains used to compute the composite scores: 

¹ Included in the Gf composite (fluid intelligence); ² Included in the Gc composite 

(crystallized intelligence). Names of subtests were translated from Dutch to English. 

 

 

Socioeconomic Status 

 In this study, socioeconomic status (SES) was determined based on the highest level of education 

attained by participants’ mothers, a commonly used indicator for SES in psychological and educational research 

(Cowan et al., 2012; Long & Rengbarger, 2023). Classification of SES followed the international Eurostat 

framework, dividing participants into three groups: low (basisschool, lagere school, VMBO, LBO & MBO1), 

middle (MBO2tm4, HAVO & VWO), and high (HBO & Universiteit) (Eurostat, 2022; Table 2). 

Table 2 

Socioeconomic status based on the level of education mother (N=1302) 

Socioeconomic status, n (%)   

   Low 176 (12.6) 

      Basisschool/lagere school 32 (2.3) 

      VMBO/LBO/MBO1 144 (10.3) 

   Middle   

         MBO2tm4/HAVO/VWO  526 (37.5) 

   High   

         HBO/Universiteit 700 (49.9) 

 

Generalized Additive Models for Location, Scale, and Shape 

 To analyze and compare the data across different levels of SES, and their relationship with total, fluid, 

and crystallized intelligence, we use Generalized Additive Models for Location, Scale, and Shape (GAMLSS; 

Rigby & Stasinopoulos, 2005). GAMLSS is a flexible framework for modeling the distribution of an outcome 

variable by allowing the mean (location; μ), variance (scale; σ), and shape (skewness; ν; kurtosis; τ) to be 

modeled as smooth functions of covariates, such as age and SES (Stasinopoulos et al., 2024; Timmerman et al., 
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2021). This flexibility is especially beneficial in the current study, as it allows for modeling complex, non-linear 

associations between SES and different aspects of intelligence. For example, the relationship between SES and 

intelligence test performance may vary across SES groups or across age, which traditional linear models might 

not capture accurately. 

 Intelligence tests are typically normed based on age to adjust for systematic differences in intelligence 

scores across age (Grieder et al., 2023; Roid, 2003; Wechsler, 2014). Traditional norming methods divide age 

into discrete intervals, assuming that the distribution remains consistent within each interval. This assumption 

can be problematic, as it implies that a uniform distribution of scores across all age groups. In practice, 

depending on the size of the intervals, this assumption is frequently unrealistic, leading to potential distortions in 

the data creating ‘jumps’ between the intervals (Timmerman et al., 2021). In contrast, GAMLSS uses continuous 

norming which allows for smooth modeling of intelligence scores without these discontinuities. This approach 

not only avoids the ‘jumps’ that can occur with discrete intervals but also enables more nuanced modeling of the 

variance and standard deviation of scores. By incorporating both the mean and the variance, GAMLSS provides 

a more comprehensive view of how intelligence scores change across age. It accounts for variability in the data, 

allowing for more precise understanding of the spread of scores within each age group, as well as across 

different SES levels (Stasinopoulos et al., 2024; Timmerman et al., 2021). Ultimately, the use of GAMLSS 

allows us to better assess the relationship between intelligence test scores and SES by accounting for both central 

tendencies and variability in a way traditional methods cannot. 

Distribution and Model Selection  

 Given the diverse ways in which data can behave, a variety of statistical distributions are available to 

model different data characteristics. The choice of distribution depends on specific properties of the data 

including its location, scale, and shape. Some distributions may provide a better fit to the data than others, 

depending on these characteristics. In this study, we fitted separate models for each intelligence domain using 

age (fourth-degree polynomial determined by forward selection) and SES as predictors (Equation 1). SES was 

dummy coded, with the lowest SES group serving as the reference category. We compared four candidate 

distributions using the Akaike Information Criterion (AIC): Box-Cox Cole and Green (BCCG), Gamma, Box-

Cox t (BCT), and Box-Cox Power Exponential (BCPE). As a robustness check, we also estimated models using 

an alternative distribution to ensure that the main findings were not dependent on the initial distributional choice. 

In the final model, the location parameter (μ) was modeled as a fourth-degree polynomial function of age and 

SES level for all intelligence types (G, Gf, Gc; Equation 1). The scale parameter (σ) was modeled as a third-
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degree polynomial function of age and SES. Both skewness (ν) and kurtosis (τ) were modeled as intercept-only, 

held constant across age and SES. 

 
𝑔(𝜇𝐺/𝐺𝑓/𝐺𝑐) = 𝛽0 + 𝛽1𝑎𝑔𝑒 + 𝛽2𝑎𝑔𝑒2 + 𝛽3𝑎𝑔𝑒3 + 𝛽4𝑎𝑔𝑒4  +  𝛽5𝑆𝐸𝑆𝑚𝑖𝑑𝑑𝑙𝑒 + 𝛽6𝑆𝐸𝑆ℎ𝑖𝑔ℎ (1) 

 

Results 

 Prior to analysis, all subtest scores were rescaled so that the maximum score for each subtest equaled 

100. This rescaling allowed for comparability across different cognitive subdomains ensuring that scores across 

different subtests are placed on a common scale. However, this rescaling might have unintentionally inflated the 

relative scores for Gc, which consistently shows higher predicted scores than other domains (Figure 1). While 

this does not affect the interpretation of developmental trends or SES-related differences within each domain, it 

limits direct comparisons of absolute score levels of Gc. 

 We had originally intended to test whether SES was more strongly associated with Gc than with Gf, as 

outlined in Hypothesis 3. However, because we could not directly compare the absolute score levels of Gf and 

Gc, Hypothesis 3 could not be tested as intended. 

Model Selection 

To select the most appropriate model for each domain, we compared four candidate distributions: Box-

Cox Cole and Green (BCCG), Gamma, Box-Cox t (BCT), and Box-Cox Power Exponential (BCPE). The 

comparison was based on Akaike Information Criterion (AIC) values. The BCT distribution yielded the lowest 

AIC values for all domains except for Gc where BCCG had a lower AIC (9841.15) than BCT (AIC = 9843.15) 

(Table 3). Because BCT had the lowest AIC value for G and Gc and the difference in AIC values for Gc between 

BCT and BCCG is relatively small, BCT was therefore selected for final modeling for consistency and 

interpretability. 

Table 3 

Akaike Information Criterion (AIC) comparison table for each candidate distribution across intelligence 

domains 

Model type BCCG Gamma BCT BCPE 

G 8943.88 9021.68 8936.66 8939.60 

Gf 9841.15 9908.37 9843.15 9842.75 

Gc 9377.54 9450.95 9374.21 9377.25 
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While the initial model selection suggested that the skewness parameter (ν) should be modeled with 

only an intercept, we explored whether including SES would improve model fit. Adding SES to the ν sub model 

did result in some significant effects (Table A1). For example, the high SES group in the fluid intelligence model 

(p = .005). However, these effects were not consistent across domains and didn’t meaningfully improve the 

overall model fit or change our conclusions. To keep the models as straightforward and interpretable as possible, 

we decided to only use the intercept to model ν in the final analyses. 

Robustness Checks 

 To evaluate the robustness of our findings, we re-estimated the GAMLSS models using the Box-Cox 

Power Exponential (BCPE) distribution instead of the Box-Cox t (BCT) distribution. This alternative distribution 

was chosen because after the BCT distribution it had the next-lowest AIC scores after BCT (Table 3). The 

models produced highly similar predicted trajectories, with no notable changes in SES effects or developmental 

trends (Figure A1), suggesting that our findings are robust to the choice of distribution. 

 We also tested whether our results were influenced by how we defined Gf and Gc. In the main analyses, 

Gf and Gc were based on multiple subdomains (Table 1). As a robustness check, we re-estimated the models 

using narrower definitions as they were also intended by the IDS-2: using only the abstract thinking subtests for 

Gf, and only the verbal reasoning subtests for Gc. While overall patterns remained consistent, these alternative 

models showed slightly greater variation in curve shapes over age and more pronounced differences between 

quantiles, especially for Gf (Figure A2). This suggests that more narrowly defined subdomains may increase 

observed variability but do not substantially alter the interpretation of SES effects. 

SES Effects and Developmental Patterns 

 SES was a significant predictor of both the location (μ) and scale (σ) parameter in all models. Table 4 

summarizes these fixed effects across domains. Higher SES was associated with higher average scores and 

reduced variability in scores, indicating more consistent cognitive performance among higher SES groups. These 

results provide support for Hypothesis 1, confirming that children from higher-SES background consistently 

score higher than those from lower SES groups across all intelligence domains. 

Table 4 

Estimated Effects of SES on the Location (μ) and Scale (σ) Parameters by Intelligence Domain 

Domain SES Level μ Estimate (b) μ p-value σ Estimate (b) σ p-value 

G Middle SES 3.51 < .001* -0.15  .041* 

 High SES 6.03 < .001* -0.27 < .001* 

Gf Middle SES 4.25 < .001* -0.21 < .001* 

 High SES 7.20 < .001* -0.34 < .001* 
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Gc Middle SES 3.64 < .001* -0.13 .070 

 High SES 6.20 < .001* -0.23 < .001* 

Note. * indicates p < .05 

 

Visual Interpretation of Predicted Trajectories 

 Plots of predicted intelligence scores by age, SES group, and quantile revealed clear and consistent 

developmental trends. Scores increased with age across all domains, with rapid growth in early childhood that 

gradually tapered in later adolescence. For all SES groups, the pattern was similar in shape, but higher SES 

groups consistently showed higher predicted scores across quantiles and age. Differences between SES groups 

were visible at all quantiles, but the gaps were most pronounced at the lower quantiles (Figure 1, Table A2, A3, 

and A4) suggesting that SES-related disparities are especially prominent in lower-performing children. 

 Additionally, SES gaps tended to widen with age at the lower quantiles (Figure 1, Table A2, A3, and 

A4). For instance, in Gc, the difference between high and low SES groups at the 5th percentile grew from 

approximately 8 points at age 5 to nearly 12 points by age 17. Similar trends were found in G and Gf. In contrast, 

the SES-gaps at the higher quantiles seemed to decrease over time. These findings mostly support Hypothesis 2, 

which proposed that SES-related differences would accumulate over time, indicating a compounding effect of 

SES on intelligence development across childhood and adolescence.  

 Taken together, these results indicate that SES is a strong and consistent predictor of both average 

performance and variability in intelligence across domains. Despite the limitations introduced by domain-

specific scaling, the findings were stable across multiple model specifications and robust to alternative domain 

definitions. 

 

Figure 1 

GAMLSS Model of Intelligence Score (G, Gf & Gc) by SES level across age 
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Discussion 

This study investigated the relationship between socioeconomic status (SES) and intelligence test 

performance in a Dutch sample of children and adolescents using the Intelligence and Development Scales 2 and 

analyzed with Generalized Additive Models for Location, Scale, and Shape (GAMLSS). In line with our first 

hypothesis, we found that higher SES was significantly associated with higher scores in general intelligence (G), 

fluid intelligence (Gf), and crystallized intelligence (Gc). These results are consistent with previous research 

showing that children from higher SES backgrounds tend to perform better on intelligence tests than their lower 

SES peers (Molfese et al., 1997; Strenze, 2007; von Stumm & Plomin, 2015). 

Importantly, score variability was also lower among high-SES children, suggesting more uniform 

cognitive development in this group. This pattern may reflect more consistent access to educational resources, 

enriched home environments, and greater exposure to language and problem-solving activities, factors frequently 

associated with higher SES (Bradley & Corwyn, 2002; Hackman et al., 2010). Additionally, parents from higher 

SES backgrounds are often more engaged in their children’s learning, which has been shown to significantly 

influence educational outcomes (Harris & Goodall, 2008). In contrast, children from lower SES backgrounds 

may experience more variability in support and stimulation, leading to greater within-group variability in 

intelligence test performance. 
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We also found that SES-related differences were most pronounced at the lower percentiles of the 

intelligence score distribution. This indicates that SES has the greatest impact on children with lower cognitive 

performance, who may be most vulnerable to environmental disadvantages. Early exposure to stereotype threat, 

whereby children from lower SES backgrounds underperform due to negative societal expectations, may also 

contribute to this disparity (Désert et al., 2009) 

Additionally, SES gaps tended to widen with age, especially at the lower end of the distribution. This 

supports our second hypothesis and suggest a cumulative SES effect on cognitive development over time (von 

Stumm & Plomin, 2015). Interestingly, at higher percentiles, SES gaps decreased over age, suggesting that high-

performing children may be less affected by SES-related constraints. One possibility is that high performers, 

regardless of their SES background, are more likely to access or capitalize on enriching opportunities, either 

through intrinsic motivation, school support, or compensatory mechanisms (Duncan & Magnuson, 2012; Jacobs 

& Wolbers, 2018; Sirin, 2005). 

 Although we intended to test whether SES was more strongly associated with Gc than Gf (Hypothesis 

3), limitations related to domain-specific scaling prevented us from comparing effect sizes directly. As a result, 

we were unable to determine whether Gc is more sensitive to SES than Gf. This hypothesis was based on prior 

research suggesting that crystallized abilities are more dependent on environmental input and therefore more 

susceptible to SES influences (Anum, 2022; Rindermann et al., 2010). Future research using standardized scores 

or structural models could help clarify domain-specific SES effects more reliably. 

Limitations and Future Directions 

 This study has several limitations. First, the data used were synthetic mock data based on a real Dutch 

norming sample, which, while designed to closely mimic real responses, may not capture the full nuance and 

variability of live testing conditions. As a result, the generalizability of the results is limited and while patterns 

may be indicative, they should be interpreted with caution.  

Second, SES was measured solely through maternal education, which, while widely used, may not fully 

capture the multifaceted nature of socioeconomic background. Including additional indicators like income or 

occupational status could improve measurement validity. 

Third, the relatively small number of participants in the low SES group (n = 176) compared to the 

middle (n = 526) and high SES (n = 700) groups, might reduce the statistical power to detect differences 

involving the low SES group and may have resulted in less precise estimates of cognitive performance within 
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this group. As a result, findings related to SES effects, particularly at the lower end of the socioeconomic 

spectrum, should be interpreted with caution. 

Moreover, the cross-sectional design limits the ability to infer causality. Although we observed 

developmental patterns, we cannot conclusively determine whether SES causes the observed differences in 

cognitive development. Longitudinal designs would be better suited to test the cumulative effects over time. 

Additionally, while GAMLSS offers detailed modeling of distributional change, it remains descriptive in nature 

and cannot account for underlying causal mechanisms. 

Finally, because findings are based on a Dutch sample, they may not generalize to populations with 

different educational systems, cultural norms, or socioeconomic structures. 

Conclusion 

 This study offers a detailed examination of how SES relates to different components of intelligence 

across development. Using GAMLSS, we demonstrated that SES is linked not only to average intelligence 

scores, but also variability and developmental trajectories, particularly among lower performing children. These 

findings reinforce the need for careful interpretation of intelligence test results in socioeconomically diverse 

populations. They also highlight the importance of early intervention and policy efforts to reduce SES-related 

disparities in cognitive development. 

 These results reinforce longstanding concerns about the fairness of intelligence testing in 

socioeconomically diverse populations. As Binet and later researchers have emphasized, intelligence test 

outcomes reflect not only innate ability, but also environmental access to learning opportunities and cognitive 

stimulation. Our findings highlight the risk that children from lower SES backgrounds may be systematically 

disadvantaged by assessments that do not account for these contextual factors, underscoring the importance of 

equitable educational policy and test interpretation. 
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Appendix A 

Artificial Intelligence Acknowledgement and Supplementary Analyses 

Artificial Intelligence Acknowledgement 

I used OpenAi’s ChatGPT to support my work with coding in R. Specifically, I used it to help troubleshoot 

errors, understand R functions, and generate initial versions of code snippets. All AI-generated code was 

carefully reviewed, tested, and adapted by me, and I remain responsible for all analyses and interpretations. 

Table A1 

Effects of SES on the Skewness (ν) Parameter 

Model type Predictor Estimate SE t p 

G SESmiddle 1.038 0.545 1.91 .57 

 SEShigh 1.840 0.581 3.17 .002 

Gf SESmiddle 0.432 0.348 1.24 .215 

 SEShigh 0.598 0.345 1.73 .083 

Gc SESmiddle 0.648 0.431 1.50 .133 

 SEShigh 1.299 0.465 2.80 .005 

 

Figure A1 

GAMLSS Model of Intelligence Score (G, Gf & Gc) by SES level using the BCPE distribution 
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Figure A2 

GAMLSS Model of Intelligence Score (G, Gf & Gc) by SES level using the BCT distribution and an alternative 

composition for Gf and Gc 

 

Table A2 

Difference in G scores between SES levels across ages and quantiles 

Age Quantile Low Middle High High-Low Middle-Low High-Middle 

5 .05 12.76 16.30 19.23 6.47 3.54 2.93 

6 .05 18.07 21.98 25.11 7.03 3.91 3.12 

7 .05 22.59 26.68 29.89 7.30 4.09 3.21 

8 .05 26.25 30.44 33.70 7.45 4.19 3.26 

9 .05 29.16 33.42 36.71 7.56 4.26 3.30 

10 .05 31.47 35.80 39.14 7.66 4.33 3.34 

11 .05 33.36 37.75 41.13 7.77 4.39 3.38 

12 .05 34.94 39.40 42.83 7.89 4.46 3.43 

13 .05 36.34 40.87 44.36 8.03 4.54 3.49 

14 .05 37.63 42.25 45.80 8.17 4.62 3.55 

15 .05 38.89 43.59 47.21 8.32 4.70 3.62 

16 .05 40.16 44.94 48.61 8.45 4.77 3.68 

17 .05 41.48 46.30 50.02 8.54 4.83 3.71 

18 .05 42.82 47.67 51.39 8.57 4.85 3.72 

19 .05 44.14 48.96 52.66 8.52 4.82 3.70 
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20 .05 45.31 50.04 53.66 8.36 4.73 3.62 

5 .5 22.42 25.92 28.43 6.00 3.49 2.51 

6 .5 28.44 31.94 34.46 6.02 3.50 2.52 

7 .5 33.18 36.69 39.20 6.02 3.51 2.52 

8 .5 36.94 40.45 42.96 6.03 3.51 2.52 

9 .5 39.98 43.49 46.01 6.03 3.51 2.52 

10 .5 42.52 46.03 48.55 6.03 3.51 2.52 

11 .5 44.75 48.26 50.78 6.03 3.51 2.52 

12 .5 46.79 50.30 52.82 6.03 3.51 2.52 

13 .5 48.74 52.25 54.77 6.03 3.51 2.52 

14 .5 50.65 54.16 56.68 6.03 3.51 2.52 

15 .5 52.53 56.04 58.56 6.03 3.51 2.52 

16 .5 54.33 57.84 60.36 6.03 3.51 2.52 

17 .5 55.99 59.50 62.01 6.03 3.51 2.52 

18 .5 57.37 60.88 63.39 6.03 3.51 2.52 

19 .5 58.32 61.82 64.34 6.03 3.51 2.52 

20 .5 58.61 62.12 64.64 6.03 3.51 2.52 

5 .95 30.47 34.05 36.34 5.87 3.58 2.29 

6 .95 37.23 40.56 42.69 5.45 3.33 2.13 

7 .95 42.31 45.49 47.52 5.21 3.17 2.04 

8 .95 46.27 49.35 51.32 5.05 3.07 1.98 

9 .95 49.51 52.51 54.44 4.94 3.00 1.93 

10 .95 52.30 55.24 57.13 4.84 2.94 1.89 

11 .95 54.85 57.74 59.59 4.74 2.89 1.85 

12 .95 57.31 60.14 61.94 4.64 2.83 1.81 

13 .95 59.74 62.51 64.27 4.53 2.77 1.76 

14 .95 62.18 64.89 66.60 4.42 2.71 1.71 

15 .95 64.59 67.24 68.90 4.31 2.65 1.66 

16 .95 66.86 69.45 71.06 4.20 2.59 1.62 

17 .95 68.82 71.37 72.95 4.13 2.54 1.58 

18 .95 70.27 72.79 74.36 4.09 2.52 1.57 

19 .95 70.94 73.47 75.05 4.11 2.53 1.58 

20 .95 70.56 73.13 74.76 4.20 2.58 1.63 

 

Table A3 

Difference in Gf scores between SES levels across ages and quantiles 

Age Quantile Low Middle High High-Low Middle-Low High-Middle 

5 .05 10.42 13.64 16.31 5.89 3.22 2.67 

6 .05 15.54 19.22 22.16 6.62 3.68 2.94 

7 .05 19.90 23.82 26.88 6.98 3.92 3.06 

8 .05 23.37 27.41 30.54 7.17 4.04 3.13 

9 .05 26.06 30.17 33.33 7.28 4.12 3.16 

10 .05 28.15 32.32 35.50 7.36 4.17 3.19 

11 .05 29.83 34.04 37.25 7.43 4.21 3.21 

12 .05 31.26 35.52 38.76 7.50 4.26 3.24 

13 .05 32.57 36.88 40.16 7.59 4.31 3.28 
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14 .05 33.85 38.22 41.54 7.70 4.37 3.33 

15 .05 35.14 39.58 42.95 7.81 4.44 3.37 

16 .05 36.46 40.96 44.38 7.92 4.50 3.42 

17 .05 37.78 42.34 45.80 8.02 4.56 3.46 

18 .05 39.05 43.64 47.13 8.08 4.59 3.49 

19 .05 40.15 44.75 48.24 8.09 4.60 3.49 

20 .05 40.90 45.47 48.92 8.02 4.57 3.46 

5 .5 21.19 24.81 27.37 6.18 3.62 2.56 

6 .5 27.54 31.17 33.73 6.19 3.63 2.56 

7 .5 32.25 35.89 38.45 6.20 3.63 2.56 

8 .5 35.75 39.38 41.95 6.20 3.64 2.56 

9 .5 38.39 42.03 44.59 6.20 3.64 2.56 

10 .5 40.48 44.12 46.69 6.20 3.64 2.56 

11 .5 42.27 45.91 48.47 6.20 3.64 2.56 

12 .5 43.94 47.58 50.14 6.20 3.64 2.56 

13 .5 45.62 49.26 51.82 6.20 3.64 2.56 

14 .5 47.37 51.00 53.57 6.20 3.64 2.56 

15 .5 49.19 52.83 55.39 6.20 3.64 2.56 

16 .5 51.04 54.67 57.24 6.20 3.64 2.56 

17 .5 52.79 56.43 58.99 6.20 3.64 2.56 

18 .5 54.27 57.91 60.47 6.20 3.64 2.56 

19 .5 55.26 58.90 61.46 6.20 3.64 2.56 

20 .5 55.45 59.08 61.65 6.20 3.64 2.56 

5 .95 31.10 35.10 37.60 6.51 4.01 2.50 

6 .95 38.60 42.26 44.54 5.94 3.66 2.28 

7 .95 43.72 47.18 49.35 5.63 3.46 2.17 

8 .95 47.32 50.66 52.76 5.44 3.34 2.10 

9 .95 49.97 53.24 55.30 5.33 3.27 2.06 

10 .95 52.10 55.32 57.35 5.25 3.22 2.03 

11 .95 54.02 57.19 59.20 5.18 3.17 2.00 

12 .95 55.93 59.05 61.03 5.10 3.13 1.97 

13 .95 57.95 61.03 62.97 5.02 3.08 1.94 

14 .95 60.14 63.17 65.07 4.92 3.03 1.90 

15 .95 62.47 65.44 67.29 4.82 2.97 1.85 

16 .95 64.81 67.72 69.53 4.72 2.91 1.81 

17 .95 66.97 69.83 71.61 4.63 2.86 1.77 

18 .95 68.68 71.50 73.25 4.57 2.82 1.75 

19 .95 69.58 72.39 74.13 4.55 2.81 1.74 

20 .95 69.26 72.09 73.86 4.61 2.84 1.77 

 

Table A4 

Difference in Gc scores between SES levels across ages and quantiles 

Age Quantile Low Middle High High-Low Middle-Low High-Middle 

5 .05 11.11 15.79 19.14 8.03 4.68 3.35 

6 .05 15.69 21.17 24.84 9.15 5.48 3.67 

7 .05 19.94 25.93 29.79 9.85 5.99 3.86 
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8 .05 23.73 30.03 34.01 10.28 6.30 3.98 

9 .05 27.03 33.54 37.60 10.57 6.51 4.06 

10 .05 29.89 36.57 40.69 10.80 6.68 4.13 

11 .05 32.40 39.21 43.40 11.00 6.81 4.19 

12 .05 34.65 41.59 45.83 11.19 6.94 4.25 

13 .05 36.71 43.77 48.07 11.36 7.06 4.30 

14 .05 38.66 45.83 50.18 11.52 7.17 4.36 

15 .05 40.54 47.80 52.20 11.66 7.26 4.40 

16 .05 42.39 49.71 54.14 11.75 7.32 4.43 

17 .05 44.21 51.55 55.99 11.78 7.34 4.44 

18 .05 45.97 53.27 57.69 11.72 7.30 4.42 

19 .05 47.59 54.77 59.14 11.55 7.19 4.37 

20 .05 48.93 55.93 60.20 11.27 6.99 4.28 

5 .5 23.89 28.06 30.99 7.10 4.18 2.93 

6 .5 30.48 34.69 37.62 7.14 4.21 2.94 

7 .5 35.92 40.14 43.08 7.17 4.23 2.94 

8 .5 40.45 44.69 47.63 7.18 4.24 2.94 

9 .5 44.30 48.54 51.49 7.19 4.24 2.94 

10 .5 47.64 51.89 54.83 7.19 4.25 2.94 

11 .5 50.62 54.87 57.81 7.19 4.25 2.94 

12 .5 53.34 57.59 60.53 7.19 4.25 2.94 

13 .5 55.88 60.13 63.07 7.19 4.25 2.94 

14 .5 58.27 62.52 65.46 7.19 4.25 2.94 

15 .5 60.52 64.77 67.71 7.19 4.25 2.94 

16 .5 62.58 66.83 69.77 7.19 4.25 2.94 

17 .5 64.38 68.63 71.57 7.19 4.25 2.94 

18 .5 65.80 70.056 73.00 7.19 4.25 2.94 

19 .5 66.72 70.96 73.90 7.20 4.25 2.94 

20 .5 66.92 71.16 74.10 7.20 4.25 2.94 

5 .95 34.28 38.18 40.95 6.67 3.90 2.77 

6 .95 42.55 46.01 48.55 6.00 3.46 2.54 

7 .95 49.06 52.22 54.60 5.54 3.16 2.38 

8 .95 54.34 57.28 59.56 5.21 2.94 2.27 

9 .95 58.77 61.54 63.73 4.96 2.77 2.19 

10 .95 62.61 65.24 67.36 4.76 2.64 2.12 

11 .95 66.05 68.57 70.63 4.57 2.52 2.06 

12 .95 69.24 71.65 73.65 4.41 2.41 2.00 

13 .95 72.24 74.54 76.49 4.25 2.30 1.95 

14 .95 75.06 77.26 79.16 4.11 2.21 1.90 

15 .95 77.66 79.78 81.64 3.98 2.12 1.86 

16 .95 79.96 82.02 83.84 3.88 2.06 1.83 

17 .95 81.81 83.83 85.64 3.83 2.02 1.81 

18 .95 83.05 85.07 86.87 3.83 2.02 1.81 

19 .95 83.44 85.51 87.35 3.90 2.07 1.83 

20 .95 82.77 84.94 86.83 4.06 2.17 1.89 

 


