

A thesis is an aptitude test for students. The approval of the thesis is proof that the student has sufficient research and
reporting skills to graduate but does not guarantee the quality of the research and the results of the research as such,
and the thesis is therefore not necessarily suitable to be used as an academic source to refer to. If you would like to know
more about the research discussed in this thesis and any publications based on it, to which you could refer, please
contact the supervisor mentioned.

faculty of behavioural
and social sciences

 research master

Master’s thesis

Advancing Replication Study Decision-Making with
DISCOURSE: Data-simulation via Iterative Stochastic
Combinatorial Optimization Using Reported Summary

Estimates

Name and initials: Lortz S. A. J.

Student number: S4381319

E-mail address: s.a.j.lortz@student.rug.nl

First assessor: Don van Ravenwzaaij

Second assessor: Marieke Timmerman

Programme: Research Master Behavioural and Social Sciences

Theme: Understanding Societal Change

ECs: 30

Date: 29-6-2025

Word count:

Are there deviations of the Master’s thesis from the proposed plan?
☒No
☐Yes, please explain below the deviations

 9 8 6 2

Advancing Replication Study Decision-Making with DISCOURSE: Data-simulation via

Iterative Stochastic Combinatorial Optimization Using Reported Summary Estimates

Sebastian A. J. Lortza

aFaculty of Behavioural and Social Sciences, University of Groningen, Groningen, Netherlands

 2

Abstract

In response to the replication crisis and the frequent unavailability of raw data sets in

psychology and the social sciences, I developed DISCOURSE - Data‐simulation via Iterative

Stochastic Combinatorial Optimization Using Reported Summary Estimates. This algorithmic

framework simulates plausible data sets from published summary statistics when access to raw

data is restricted. DISCOURSE comprises four modules tailored to various analysis contexts:

Descriptives, ANOVA, Multiple Linear Regression, and Linear Mixed‐Effects Regression.

Each module’s workflow initializes a candidate data set and through iterative cycles, the

algorithm applies stochastic perturbations, heuristic adjustments, and permutation‐based

moves to alter values. An objective function evaluates the alignment with reported summary

estimates and a simulated‐annealing acceptance criterion with temperature schedules ensures

robust exploration of the search space with convergence towards global optima. I validate the

method on multiple benchmark data sets with known raw data, demonstrating that each module

reproduces its target summary measures with very small discrepancies. I showcase the

application of the algorithmic framework using published research articles and discuss the

method’s limitations. DISCOURSE is available as R package and comprehensive ShinyApp,

offering researchers a tool for generating synthetic data sets solely from summary estimates.

Keywords: Data Generation, Summary Statistics, Synthetic Data, Replication, Meta‐heuristic

Algorithms.

 3

Introduction

In the past decade, the field of psychology and the social sciences have faced a

significant replication crisis. Many studies have failed to replicate, calling into question the

robustness and reliability of scientific findings. Theoretical perspectives indicate that most

published research claims are uninterpretable (Meehl, 1978, 1990) or incorrect (Ioannidis,

2005), and that reported associations are often inflated (Ioannidis, 2008). Empirically, the

Open-Science-Collaboration (2015) found that only 36% of replication attempts in psychology

resulted in statistically significant effects, compared to 97% in the original studies. Only about

half of the initial effect sizes fall between the 95% confidence intervals of the replications. This

striking crisis, largely driven by questionable research practices and publication bias

(Schimmack, 2020), has fueled a widespread reassessment of research practices.

To address these concerns, systematic replication attempts have become more common

and are in line with Open Science (Nosek et al., 2022). Replication studies offer benefits such

as corroborating findings, deepening understanding of research fields, and serving as an

educational tool (Derksen et al., 2024). Over the past decade, the frequency of replication

studies and their associated fundings have grown substantially in the Netherlands and globally,

reflecting the commitment to improve research practices (Derksen et al., 2024). Despite these

efforts, challenges persist, especially when replication studies fail to confirm original findings.

A failed replication study raises important questions about scientific error (van

Ravenzwaaij et al., 2023). Was the initial finding a true effect, but was the replication study

underpowered or conducted under different conditions? Even with true effects, replication

studies may fail due to small effect sizes and type II errors, as demonstrated by Schimmack

(2020) who estimated a 43% replicability rate in social psychology. Was the initial finding a

stochastic false positive, potentially influenced by well-documented problems such as p-

hacking (Schimmack, 2020)? These scenarios underscore the difficulty of interpreting failed

replications and the necessity to further analyse them.

When raw data from the original study is available, researchers can attempt to

reproduce the results by reanalysing data to assess robustness (Derksen et al., 2024). Methods

such as multiverse analyses (Steegen et al., 2016), in which various analytical decisions are

tested, and many-analyst studies (Silberzahn et al., 2018), in which multiple researchers

independently analyse the data and report results, help evaluate how analytical flexibility

influences findings. These tools can guide decisions about whether further replication attempts

are warranted. However, restricted access to raw data limits these approaches.

 4

Raw data from initial studies is often unavailable (Wicherts et al., 2006). Miyakawa

(2020), chief editor of Molecular Brain, reported that 23% of submitted manuscripts lacked

raw data, and 97% of these did not provide it upon request. In replication research, where data

requests occur years later, this hurdle is even higher. Researchers either do not share their data

or cannot do so for various reasons. Barriers include ethical concerns (e.g., protecting

participant privacy), data loss due to poor management or technical issues, and researchers’

unwillingness to share data because of competitive pressures or fear of scrutiny.

Without raw data, researchers must rely solely on summary statistics, eliminating their

ability to conduct reproductions or interrater analyses. This lack of access to plausible raw data

complicates replication study decision-making: without detailed information on variability and

analytic pipelines, researchers cannot assess the sensitivity of results to different analytic

choices. Consequently, planning a replication becomes a blind exercise. Conflicting findings

are often resolved through additional replication studies, but these are time-consuming, costly,

and burdensome for participants raising ethical concerns. This inefficiency and lack of

sustainability in replication research is especially concerning given the recent budget cuts in

the Netherlands and abroad. By contrast, preliminary analyses on synthetic data based on

reported summary estimates would enable informed judgments about the expected robustness

of replication outcomes.

While in fields such as econometrics techniques for simulating population data with

and without sample data exist (Lenormand & Deffuant, 2013; Templ et al., 2017), within

psychology and related disciplines, methods relying solely on summary statistics have been

primarily developed for fraud detection (Bordewijk et al., 2021; Hartgerink et al., 2019). For

example, tools such as statcheck re-calculate p-values (Epskamp & Nuijten, 2014), the GRIM

test identifies anomalies in reported means (Brown & Heathers, 2017), the GRIMMER test

extends these principles to variance measures (Anaya, 2016), and the reference proportions for

baseline p-values can be determined (Bolland et al., 2020). Additionally, univariate data

distributions for integer variables can be reconstructed with the SPRITE algorithm (Heathers

et al., 2018). While these techniques all share the principle of anchoring on available summary

measures to assess the plausibility of reported measures, no method has been proposed to

simulate entire raw data sets.

To address this methodological gap, this research aims to develop a practical tool for

simulation of raw sample data from summary statistics to advance replication study decision-

making. I pose the following research questions:

1. Method Development: How can raw sample data be simulated from diverse

 5

summary statistics?

2. Method Validation: How close are the reported summary statistics to the summary

statistics of the data simulated with the developed method?

3. Application Development: How can the method be made user-friendly and

accessible?

The project outcome has substantial implications for scientific research and offers

several key benefits. Improved decision-making: By generating synthetic data that aligns with

reported summary estimates, researchers can conduct follow-up analyses to assess consistency

across different analytical implementations and perform sensitivity checks to evaluate how

variations in modelling choices influence outcomes. Additionally, they can explore other

research questions with partly different variable combinations compared to the original study.

This ensures that decisions to replicate are grounded in an assessment of robustness, rather than

blind assumptions. Resource savings: Simulated data sets could reveal when reported effects

are highly contingent on specific analytic decisions or exhibit excessive variability, signalling

that a direct replication may be unlikely to yield definitive insights. In such cases, researchers

can postpone or redesign replication studies, thereby avoiding unnecessary efforts, conserving

financial resources, and reducing participant burden. Enhanced reproducibility: The approach

facilitates goals of Open Science by promoting open research practices and enabling analysis

even when raw data is unavailable.

Taken together, I address a critical need in the scientific community by offering a tool

to simulate raw data from summary statistics. By integrating methodological development with

practical utility, the project aims to advance a more efficient and sustainable research process.

Algorithm Framework

I introduce the DISCOURSE framework – Data-simulation via Iterative Stochastic

Combinatorial Optimization Using Reported Summary Estimates. The primary scope of the

algorithmic framework is to reconstruct complete data sets using only summary statistics,

giving researchers a way - when raw data are unavailable - to inform replication study

decision‑making. The method is available as R package discourse and comprehensive

ShinyApp at https://sebastian-lortz.github.io/discourse/.

DISCOURSE is underpinned by three core characteristics. It is iterative: The algorithm

employs a cyclical process that continuously refines the simulated data. At each iteration,

adjustments are made to reduce the discrepancy between the simulated and target summary

statistics. It is stochastic: The method incorporates random sampling techniques to explore the

data space effectively, ensuring a robust search for viable data configurations. It is

 6

combinatorial: By transforming a high dimensional infinite search space into a finite

optimization problem through the use of permutations, DISCOURSE efficiently navigates the

multitude of potential data arrangements. Together, these features enable the algorithmic

framework to simulate and adjust data until the generated summary statistics closely match the

reported targets.

Modular Structure

The DISCOURSE framework is composed of four interchangeable optimization

modules tailored to different data structures and statistical models, each following a similar

high-level workflow. The modules are organized according to the dimensionality of the data to

be generated. In the univariate setting, iterative adjustments are applied to a single vector,

whereas in the multivariate context, the moves operate on an entire matrix containing multiple

variables. An overview is presented in Table 1. These modules can operate independently or

sequentially, depending on the specific requirements of the optimization context.

Table 1

Overview of Modules and Respective Functions of the R Package

Data Structure

Univariate Multivariate

Descriptives (optim_vec()) Linear Regression (optim_lm())

ANOVA (optim_anova()) LME (optim_lme())

Note. The dimensionality of the data structure refers to the data to be simulated.

High-Level Workflow

The process (see Figure 1) begins with the candidate initialization, thus, the creation of

an initial simulated vector or matrix. The algorithm then iteratively refines the candidate by

optimizing an objective function that quantifies the discrepancy between the summary statistics

of the candidate and the reported targets. At each iteration the following two steps are

performed.

Candidate Modification: Modifications to the data are produced through different types

of moves (e.g., global and local; heuristic and stochastic) within the search space.

Candidate Evaluation: Each candidate is evaluated by an objective function and

accepted based on a stochastic optimization criterion, ensuring that modifications progressively

reduce the objective value.

 7

Figure 1

High-Level Workflow of the DISCOURSE Framework

Note. From published summary statistics, DISCOURSE initializes a data set and then

iteratively applies modifications and evaluates each candidate against reported summary

estimates. The loop continues until convergence or iteration/restart limits are reached, yielding

the final simulated data.

 8

Convergence

The algorithm is deemed to have met the convergence criteria as soon as the best

objective function score 𝑓!"#$ falls below the user‐specified 𝑡𝑜𝑙𝑒𝑟𝑎𝑛𝑐𝑒. If convergence is not

reached after 𝑚𝑎𝑥	𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 steps, the algorithm restarts (up to 𝑚𝑎𝑥	𝑠𝑡𝑎𝑟𝑡𝑠 times) from the

candidate with 𝑓!"#$. Only when all allowed iterations and restarts have been exhausted

without achieving the 𝑡𝑜𝑙𝑒𝑟𝑎𝑛𝑐𝑒	does the routine stop due to iteration limits rather than error

criteria.

Optimization Modules

Univariate Distributions

Descriptives

Overview. Suppose a published article reports the sample 𝑚𝑒𝑎𝑛, 𝑆𝐷, sample size 𝑁,

and states that data was collected on Likert scales, implying integer values within a defined

𝑟𝑎𝑛𝑔𝑒. The aim is to reconstruct an underlying data set whose values exactly reproduce these

reported summary statistics. Therefore, a vector of length 𝑁 is reconstructed so that its mean

and 𝑆𝐷 match the prescribed targets, while also enforcing bounds and the requirement of

discrete values (or continuous values). This quickly becomes a difficult optimization task.

Because all 𝑁 elements must be optimized at once, the problem resides in an 𝑁-dimensional

search space (see Appendix A for details). Moreover, the resulting objective surface can

contain numerous local minima, where reliable gradient information is difficult to obtain.

Under these conditions, the application of standard gradient‐based optimizers to find global

solutions typically fails (Conn et al., 2009). Hence my choice of meta‐heuristic optimization

strategies that can explore such high‐dimensional landscapes without relying on derivatives

(for an overview of meta-heuristic search procedures I refer to Abdel-Basset et al. (2018)).

The descriptives module employs two complementary meta-heuristic algorithms. For

integer variables I use a customized simulated-annealing framework (Kirkpatrick et al., 1983)

that blends stochastic with problem-specific heuristic moves to efficiently explore global

minima. For continuous variables I leverage particle-swarm optimization (PSO) a population-

based algorithm that balances exploration and exploitation by tracking both each particle’s

own best position and the swarm’s global best (Kennedy et al., 1995). Both approaches

optimize the same unified objective function - minimizing a weighted error on the sample

𝑚𝑒𝑎𝑛 and 𝑆𝐷 - under a single framework, and each is tuned via algorithm parameters to

provide robust, automated optimization without requiring gradients or convexity

assumptions. The following sections describe in detail the candidate initialization,

 9

modification strategies, objective evaluation, acceptance rules, convergence criteria and

parameter overview (see Table 2).

Candidate Initialization. Candidate initialization proceeds as follows. When dealing

with integer variables, the algorithm generates each value of the candidate by drawing

integers uniformly from the set of all integers between the specified lower and upper bounds.

However, this uniform sampling can be replaced by a discrete distribution: the user may

supply a vector of probabilities assigning a probability to each integer in the 𝑟𝑎𝑛𝑔𝑒, and the

initialization routine will sample according to those probabilities rather than equal ones.

Continuous candidates are initialized by generating an initial position vector, where

each element is drawn uniformly at random within the 𝑟𝑎𝑛𝑔𝑒. That vector seeds the first

particle, the remaining particles in the default swarm of size

𝑠 = 410 + 2 × √𝑁;

are likewise placed uniformly within the same box (Bendtsen, 2022). Initial movement

speeds and directions of particles are then seeded in accordance with the SPSO-2007

specification, typically as random vectors whose magnitudes do not exceed the diagonal

length of the search region, ensuring the swarm begins with broad but feasible exploration

(Bendtsen, 2022; Clerc, 2012).

Hence, the procedure for both integer and continuous vectors does not impose an a

priori assumption of normality on the generated data. Nonetheless, the algorithm process may

converge toward a Gaussian distribution, if such a plausible data distribution exists given the

parameter settings.

Candidate Modification. For integer variables with possible values within allowable

bounds the algorithm applies two types of moves: a purely stochastic move and a heuristic

move. The stochastic move selects one random observation and alters its value (respecting the

variable’s bounds), thus changing the 𝑚𝑒𝑎𝑛 and 𝑆𝐷. The heuristic move selects two random

observations, increases one by	𝜈	and decreases the other by	𝜈	(within allowable bounds), thus

preserving the mean while altering the 𝑆𝐷 (see Appendix B for details). For continuous

variables the candidate modification follows a standard PSO routine (see Appendix B)

Candidate Evaluation. Candidate evaluation is formalized by an objective function

𝑓(𝑥) that measures the weighted sum of root mean squared normalized errors in the sample

mean and standard deviation of a candidate vector 𝑥. Let 𝑥̅ and 𝑠 denote the candidate’s

sample mean and standard deviation, each rounded to the same precision (number of decimal

places) as the target mean 𝜇 and target standard deviation 𝜎. Define the relative deviations

 10

Δ% =
&̅(%

)*+(|%|,/)
, Δ1 =

#(1
)*+(1,/)

,

where 𝜀 is a small constant to avoid division by zero. The objective function is

𝑓(𝑥) = 𝜔2EΔ%3 + 𝜔3EΔ13 ,

with user-defined weights 𝜔2 and 𝜔3 balancing the emphasis on mean versus standard

deviation error. Lower values of	𝑓(𝑥)	correspond to closer agreement with the prescribed

targets. This single scalar score both drives the acceptance criterion in the simulated-

annealing branch and serves as the fitness measure for personal- and global-best updates in

the PSO routine.

Acceptance Criteria. For integer variables, candidate updates follow a simulated‐

annealing scheme and convergence (see Appendix C). In the continuous variable branch,

acceptance as well as convergence is governed by a PSO routing (see Appendix C).

Convergence Criteria. For integer variables, the algorithm is deemed to have met the

convergence criteria as soon as the best objective function score 𝑓!"#$ falls below the user‐

specified 𝑡𝑜𝑙𝑒𝑟𝑎𝑛𝑐𝑒. If convergence is not reached after 𝑚𝑎𝑥	𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 steps, the algorithm

restarts (up to 𝑚𝑎𝑥	𝑠𝑡𝑎𝑟𝑡𝑠 times) from the candidate with 𝑓!"#$. Only when all allowed

iterations and restarts have been exhausted without achieving the 𝑡𝑜𝑙𝑒𝑟𝑎𝑛𝑐𝑒 does the routine

stop due to iteration limits rather than error criteria.

For continuous variables, the convergence relative to the 𝑡𝑜𝑙𝑒𝑟𝑎𝑛𝑐𝑒 is managed by

the underlying psoptim() call. As particles evolve, 𝑓4!"#$ is compared at each iteration to the

𝑎𝑏𝑠𝑡𝑜𝑙 parameter (equal to the user’s 𝑡𝑜𝑙𝑒𝑟𝑎𝑛𝑐𝑒). Therefore, if 𝑓4!"#$ < 𝑡𝑜𝑙𝑒𝑟𝑎𝑛𝑐𝑒, the

optimization converges. Otherwise, the algorithm stops when it either (a) reaches the

maximum number of iterations (𝑚𝑎𝑥𝑖𝑡	𝑃𝑆𝑂) or (b) tracks 56&7$	9:;
<

 consecutive iterations

without improvement of 𝑓4!"#$.

Table 2

Parameter Overview for the Descriptives Module: Reported Summary Estimates, Algorithm

Hyperparameters in the ShinyApp and Package-Only Hyperparameters

Parameter Description

N The sample size of the data and thus, the length of the target vectors.

Target Mean The vector containing reported means of the variables.

Target SD The vector containing the reported standard deviations of the variables.

 11

Range The matrix containing minimum (first row) and maximum (second row)

for each variable.

Integer The vector containing a logical statement for each variable; TRUE: the

variable has integer values, FALSE: the variable has continuous values.

Tolerance The threshold for the weighted objective function value below which the

optimization will stop.

Max Iterations The maximum number of iterations the algorithm will run each time it

restarts and for each integer variable.

Maxit PSO The maximum number of iterations the algorithm will run for each

continuous variable.

Temperature The starting temperature for the simulated annealing, which sets the

initial likelihood of accepting worse solutions in the first start.

Cooling Rate The factor by which the temperature is multiplied after each iteration,

governing how quickly the algorithm reduces its acceptance of worse

solutions.

Max Starts The maximum number of times the optimization algorithm will restart

from the current best solution using reduced initial temperatures.

Parallel Enable the algorithm to execute on a parallel backend for improved

performance.

Weights The weights multiplied with the mean and standard deviation term in the

objective function; adjusting these values can steer the optimization

toward preferred trade‑offs and improve performance. In the ShinyApp

the R function weights_vec() can automatically compute quasi-optimal

objective function weights from each term’s initial contribution, using a

Monte-Carlo routine.

Prob Heuristic The probability of applying a heuristic vs. a stochastic search move.

Init Probs The sampling probabilities for integer moves to use prior expectations.

Progress Bar Enable the text progress bar during optimization.

EPS The small constant to avoid division by zero in the objective function.

Check Grim Perform a GRIM check on target mean for integer variables.

Min Decimals Minimum decimal places for target values’ trailing zeros.

Note. Bold indicates reported summary estimates; italic indicates hyperparameters adjustable

in the ShinyApp; plain text indicates hyperparameters only configurable via the R package.

 12

Example. Robin knows the data (𝑁	 = 	5) come from a Likert scale (𝑟𝑎𝑛𝑔𝑒	1 − 7)

with reported 𝑚𝑒𝑎𝑛 𝜇 = 4 and 𝑆𝐷 𝜎 = 2. They set the algorithm’s parameters to

𝑊𝑒𝑖𝑔ℎ𝑡𝑠:	𝜔2 = 1, 	𝜔3 = 1

𝑇𝑜𝑙𝑒𝑟𝑎𝑛𝑐𝑒 = 0.001

𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒	 = 	1

𝐶𝑜𝑜𝑙𝑖𝑛𝑔	𝑅𝑎𝑡𝑒	 = 	 .9

All other parameters = 	𝑑𝑒𝑓𝑎𝑢𝑙𝑡.

DISCOURSE then optimizes the data vector 𝑋(7), where	𝑖 is the current iteration, to minimize

the objective function 𝑓 and match the reported summary estimates.

Candidate Initialization. The algorithm initializes the first data

𝑋(=) = [1, 7, 3, 5, 2] = 𝑋!"#$,

which results in

𝑚𝑒𝑎𝑛	 = 	3.6 , 𝑆𝐷	 = 	2.4 ,

 𝑓(=) = 1 × _`<.?(@
@
a
3
+ 1 ×_`3.@(3

3
a
3
= 0.30 = 𝑓!"#$ = 𝑓ABCC"D$,

Iteration 1.

Modification. A stochastic move is randomly chosen. Index 2 (value 7) is selected,

and a new value is drawn from the within-range values (1, … ,6) → 4.

The data is updated accordingly

𝑋(2) = (1, 4, 3, 5, 2) .

Candidate Evaluation. The 𝑚𝑒𝑎𝑛 and 𝑆𝐷 is computed

𝑚𝑒𝑎𝑛	 = 	3.0 , 𝑆𝐷	 = 	1.6 ,

and the value of the objective function is

𝑓(2) = 1 × _`<.=(@
@
a
3
+ 1 × _`2.?(3

3
a
3
= 0.45 .

Candidate Acceptance. The change in objective is

∆𝑓 = 𝑓(2)-𝑓ABCC"D$ = +0.15 .

Since the new candidate data fits worse, it is accepted with probability

𝑃	 = 	 𝑒((∆F/H(")) = 0.86 .

Here the draw succeeds, so the candidate is accepted

𝑋ABCC"D$ = 𝑋(2) and 𝑓ABCC"D$ = 𝑓(2) ,

While the best candidate remains

𝑋!"#$ = 𝑋(=) and 𝑓!"#$ = 𝑓(=) .

 13

Cooling Schedule. The new temperature 𝑇 is

𝑇(2) = 1 × 0.9 = 0.9 .

Iteration 2.

Candidate Modification. A heuristic move is randomly chosen. Index 2 (value 4)

and index 4 (value 5) are selected and the 𝑆𝐷 needs to be increased. To decrease

index 2 and increase index	4, 𝛿 = 2 is randomly sampled from the possible values

(1,2), and the data is updated

𝑋(3) = (1, 2, 3, 7, 2) .

Candidate Evaluation. The 𝑚𝑒𝑎𝑛 and 𝑆𝐷 is computed

𝑚𝑒𝑎𝑛	 = 	3.0 , 𝑆𝐷	 = 	2.3 ,

and the objective is

𝑓(3) = 1 × _`<.=(@
@
a
3
+ 1 × _`3.<(3

3
a
3
= 0.40 .

Note how the 𝑚𝑒𝑎𝑛 remains unchanged while the 𝑆𝐷 is pushed closer to the specified

target.

Candidate Acceptance. The change in objective is

∆𝑓 = 𝑓(3)-𝑓ABCC"D$ = −0.05 ,

Since the new candidate data fits better, it is unconditionally accepted

𝑋ABCC"D$ = 𝑋(3) and 𝑓ABCC"D$ = 𝑓(3) ,

While the best candidate remains

𝑋!"#$ = 𝑋(=) and 𝑓!"#$ = 𝑓(=) .

Cooling Schedule. The new temperature is

𝑇(3) = 0.9 × 0.9 = 0.81 .

Subsequent Iterations.

Subsequent iterations continue the same until either 𝑡𝑜𝑙𝑒𝑟𝑎𝑛𝑐𝑒 or 𝑚𝑎𝑥	𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠

are reached.

Final Candidate. In this example, further updates eventually yield

𝑋(∗) = (2, 2, 4, 6, 6) = 𝑋!"#$

and the algorithm converges with an exact match

𝑚𝑒𝑎𝑛	 = 	4.0 , 𝑆𝐷	 = 	2.0 ,

𝑓(∗) = 1 × _`@.=(@
@
a
3
+ 1 × _`3.=(3

3
a
3
= 0 .

Finally, the data 𝑋!"#$	is returned to Robin.

 14

ANOVA

Overview. Suppose a published article reports the design and results of an ANOVA.

It states the number of factors (between, within) with 𝑙𝑒𝑣𝑒𝑙𝑠, 𝐹 statistics, 𝑔𝑟𝑜𝑢𝑝	𝑚𝑒𝑎𝑛𝑠,

sample size 𝑁, and that the data was collected on Likert scales, implying integer values

within a defined 𝑟𝑎𝑛𝑔𝑒. The aim is to reconstruct an underlying data set whose values

exactly reproduce these reported summary estimates. In the ANOVA module, the data

include one or more categorical factors and a single dependent variable (outcome). The

grouping structure is represented in the design matrix 𝑀, in which a column is assigned to

each factor and filled with the respective 𝑙𝑒𝑣𝑒𝑙𝑠 (e.g., 1, 2, 3, …) for each observation. I can

reconstruct	𝑀 directly from reported summary statistics whenever the 𝑠𝑢𝑏𝑔𝑟𝑜𝑢𝑝	𝑠𝑖𝑧𝑒𝑠 𝑛J are

reported. If only the total sample size 𝑁 is provided, a balanced design is assumed.

Consequently, the single data vector to be simulated and optimized is the outcome variable 𝑌,

and the goal is to determine 𝑌 (in conjunction with 𝑀) so that the resulting ANOVA 𝐹

statistics match the predefined target values (for parameter overview see Table 3). This

optimization is challenging because it occurs in an 𝑁-dimensional search space (see

Appendix A for details). Notably, rearranging the values of 𝑌 inside a group does not affect

𝐹, but swapping values between groups does. As in the descriptive case, the resulting

objective surface is rugged and lacks reliable gradient information. For these reasons, I

employ derivative-free meta-heuristic methods capable of navigating such complex, high-

dimensional landscapes (Abdel-Basset et al., 2018; Conn et al., 2009).

 The ANOVA module employs a bespoke simulated-annealing framework

(Kirkpatrick et al., 1983) with a search move that is both heuristic and stochastic to locate

global minima. In contrast to the descriptive module’s PSO application, it provides two

specialized moves for integer and continuous outcomes, each respecting the fixed grouping

structure that standard PSO updates cannot accommodate. The algorithm minimizes 𝑓

defined as the error between the computed and target ANOVA 𝐹 statistics and relies on a set

of tuning parameters to deliver robust, automated optimization without any need for gradient

information or convexity assumptions.

Candidate Initialization. To begin with, the design matrix 𝑀 is created based on 𝑁,

𝑙𝑒𝑣𝑒𝑙𝑠, 𝑠𝑢𝑏𝑔𝑟𝑜𝑢𝑝	𝑠𝑖𝑧𝑒	𝑛_𝑗, and 𝑓𝑎𝑐𝑡𝑜𝑟	𝑡𝑦𝑝𝑒 so that it mirrors the reported design. Please

note that 𝑀 is constructed for ANOVA (each column encodes a categorical factor with

multiple levels) rather than as a dummy-coded predictor matrix for ordinary least-squares

(OLS) regression. Once 𝑀 is fixed, the candidate vector 𝑌 is initialized to reproduce each

 15

supplied target 𝑔𝑟𝑜𝑢𝑝	𝑚𝑒𝑎𝑛 𝑡𝑀𝑒𝑎𝑛J exactly. For continuous data, the algorithm simply

repeats 𝑡𝑀𝑒𝑎𝑛J exactly 𝑛J times; for integer data, it assigns the two nearest integer values in

proportions that yield the exact mean (see Appendix E for details).

Hence, the procedure for both integer and continuous vectors does not impose an a

priori assumption of normality on the generated data. Nonetheless, the algorithm process may

converge toward a Gaussian distribution, if such a plausible data distribution exists given

parameter settings.

Candidate Modification. Candidate modifications in the ANOVA module employ a

single heuristic-stochastic move that leaves every group’s mean exactly intact but perturbs

individual values within groups to adjust their variability. While being conceptually similar to

the descriptives module, it differs from it, as it fully preserves the grouping structure defined

by 𝑀, optimizes only a single objective (𝐹 values), employs more stochastic elements, and

applies to integer and continuous data. At each iteration, one group is selected at random and

two distinct observations within that group are sampled. Denoting their current values as 𝑥7

and 𝑥J and the allowable	𝑟𝑎𝑛𝑔𝑒 as [𝐿, 𝑈] , feasible adjustment bounds

𝛿57D = maxt𝐿 − 𝑥7 , 	𝑥J − 𝑈, −𝜀u , 𝛿56& = mint𝑈 − 𝑥7 , 	𝑥J − 𝐿, 𝜀u ,

are computed so that adding 𝛿 to 𝑥7 and subtracting 𝛿 from 	𝑥J will keep both values within

[𝐿, 𝑈]. 𝜀 governs the magnitude of modification and is implied by the user’s setting of the

𝑚𝑎𝑥	𝑠𝑡𝑒𝑝 parameter

𝜀 = (𝑈 − 𝐿) × 𝑀𝑎𝑥	𝑆𝑡𝑒𝑝 ,

to prevent early convergence due to tremendous modification of single values (this would

result in a distribution with many values identical to the 𝑔𝑟𝑜𝑢𝑝	𝑚𝑒𝑎𝑛 and a few extreme

values, with nothing in between). Subsequently, 𝛿 is sampled uniformly from the continuous

or integer space [𝛿57D, 𝛿56&] and added to or subtracted from 𝑥7 or 	𝑥J, respectively. If

𝛿57D > 𝛿56& no valid modification is possible, and the candidate is left unchanged. Because

each move conserves the sum of the two selected values, the 𝑔𝑟𝑜𝑢𝑝	𝑚𝑒𝑎𝑛 remains exact. In

contrast to the descriptive module, where unit increments (𝛿 = 1) are applied across the

entire vector to nudge the 𝑆𝐷 towards its target, this ANOVA search move allows variable

step sizes up to 𝜀, confines perturbations to within-group pairs, and stochastically modifies

integer and continuous data. Thus, repeated applications enable effective exploration of the

constrained search space without the need of explicitly optimizing for 𝑔𝑟𝑜𝑢𝑝	𝑚𝑒𝑎𝑛𝑠

themselves.

 16

Candidate Evaluation. Candidate evaluation is governed by an objective function

that computes the root mean square error (RMSE) between the target 𝐹 values 𝐹$6C4"$ and

the ANOVA 𝐹 statistics 𝐹y	for a candidate outcome vector, after rounding the computed 𝐹

statistics to the same precision as the targets to prevent spurious inaccuracy. Because there is

only a single component to match (𝐹 values), no additional normalization or weighting is

required, unlike in the descriptive module. For any design that is unbalanced, involves

specified contrasts, or includes within‐subject factors, I assemble the full data frame

(including subject identifiers when required), estimate the relevant 𝐹y	statistics using

ANOVA, and compute

𝑓(𝑥) = _2
K
∑ t𝐹y" − 𝐹"

$6C4"$u
3K

"L2 ,

Where 𝐸 is the number of effects 𝑒 of interest. In the special case of a balanced, between-

subjects design with no contrasts I can derive a computational less demanding 𝑓. From these

designs it follows

𝐹" =
M:$
M:K

 , and 𝑆𝑆N = 𝑆𝑆NN = 𝑆𝑆NNN ,

where	𝑀𝑆" is the mean square of the effect 𝑒, 𝑀𝑆𝐸 the mean square error of the model, and

𝑆𝑆 the sum of squares, I precompute the target 𝑀𝑆𝐸$6C4"$ from the sequential decomposition

by fitting a series of weighted OLS regressions that add one factor at a time to an intercept-

only model. The reduction in weighted residual sum of squares gives the 𝑆𝑆" of the effect and

it is possible to calculate

𝑀𝑆𝐸$6C4"$ = ::$ OF$⁄

Q$
%&'($% ,

and I define the objective function

𝑓(𝑥) = |}
∑ SD)(2T#)

*+
),-
∑ SD)(2T+
),-

−𝑀𝑆𝐸$6C4"$~
3

 ,

where 𝑠 is the standard deviation in group 𝑗.

 Because each evaluation either minimizes the RMSE of rounded 𝐹 values or the

difference in 𝑀𝑆𝐸, the optimizer directly targets the quantities of interest for all ANOVA

designs without relying on gradient information or convexity.

Acceptance Criteria. For integer and continuous data, candidate updates follow a

simulated‐annealing scheme (see Appendix B for details).

 17

Table 3

Parameter Overview for the ANOVA Module: Reported Summary Estimates, Algorithm

Hyperparameters in the ShinyApp and Package-Only Hyperparameters

Parameter Description

N The sample size of the data and thus, the number of subjects.

Levels The vector containing the number of levels for each factor.

Factor Type The vector containing if a factor is ‘between’ or ‘within’ subjects.

Subgroup

Size

Optional sizes of each between-subjects group for unbalanced designs.

Group Means The vector containing reported means of all subgroups.

Target F List List with: F, target F statistics vector; Effect, character vector of effect

names.

DF Effects The vector with degrees of freedom for each target effect.

Range The vector containing minimum and maximum of the outcome.

Integer Weather the outcome is an integer variable.

Type SS The type 2 or type 3 sum of squares to be used

Formula The model formula of the ANOVA.

Tolerance The threshold for the objective function value below which the

optimization will stop.

Max Iterations The maximum number of iterations the algorithm will run each time it

restarts.

Temperature The starting temperature for the simulated annealing, which sets the

initial likelihood of accepting worse solutions in the first start.

Cooling Rate The factor by which the temperature is multiplied after each iteration,

governing how quickly the algorithm reduces its acceptance of worse

solutions.

Max Starts The maximum number of times the optimization algorithm will restart

from the current best solution using reduced initial temperatures.

Max Step The proportion of the range governing the maximum magnitude of

modification in an iteration.

Parallel Start The number of independent runs (parallel or sequential) to simulate

multiple data sets.

Best Solution Return the best matching data set only (otherwise: return all data sets).

 18

Progress Bar Enable the text progress bar during optimization.

Check Grim Perform a GRIM check on target mean for integer variables.

Target F List List with: Contrast, optional contrast formula; Contrast Method, optional

contrast method name.

Min Decimals Minimum decimal places for target values’ trailing zeros.

Note. Bold indicates reported summary estimates; italic indicates hyperparameters adjustable

in the ShinyApp; plain text indicates hyperparameters only configurable via the R package.

Example. Robin knows the data come from a Likert scale (𝑟𝑎𝑛𝑔𝑒	1 − 7) with

reported 𝑔𝑟𝑜𝑢𝑝	𝑚𝑒𝑎𝑛𝑠 𝜇2 = 2, 𝜇2 = 3, 𝜇2 = 4 and 𝑠𝑢𝑏𝑔𝑟𝑜𝑢𝑝	𝑠𝑖𝑧𝑒 𝑛	 = 	3 (𝑁 = 9). The

fixed-effect ANOVA results are reported with	𝐹$6C4"$(2,6) = 3. They set the algorithm’s

parameters to

𝑇𝑜𝑙𝑒𝑟𝑎𝑛𝑐𝑒 = 0.001

𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒	 = 	1

𝐶𝑜𝑜𝑙𝑖𝑛𝑔	𝑅𝑎𝑡𝑒	 = 	0.9

All other parameters = 𝑑𝑒𝑓𝑎𝑢𝑙𝑡.

DISCOURSE then optimizes the data vector 𝑌(7), where	𝑖 is the current iteration, to minimize

the objective function 𝑓 and match the reported summary estimates. The target 𝑀𝑆𝐸 is

computed for the optimization

𝑀𝑆𝐸$6C4"$ = ::$ OF$⁄

Q$
%&'($% =

<(3(<)*U<(<(<)*U<(@(<)*

3×<
= 1 .

Candidate Initialization. The algorithm generates the factor structure

𝑀 = (1, 1, 1, 2, 2, 2, 3, 3, 3) ,

and initializes the first data

𝑌(=) = (2, 2, 2, 3, 3, 3, 4, 4, 4) = 𝑌!"#$,

which results in

𝜇2 = 2, 𝜇2 = 3, 𝜇2 = 4 ,

 𝑓(=) = E(0 − 1)3 = 1 = 𝑓!"#$ = 𝑓ABCC"D$.

Iteration 1.

Candidate Modification. Group 1 is randomly picked and index 1 (value 2) and

index 3 (value 2) are selected. The bounds of possible values to increment index 1

and decrement index	2 are determined 𝛿57D = −1 and 𝛿56& = 1. 𝛿 = 1 is sampled

and added to index 1 and subtracted from index 2. The data is updated accordingly

 19

𝑌(2) = (3, 2, 1, 3, 3, 3, 4, 4, 4) .

Candidate Evaluation. The value of the objective function is computed

𝑓(2) = |}
∑ SD)(2T#)

*+
),-
∑ SD)(2T+
),-

−𝑀𝑆𝐸$6C4"$~
3

= _`(<(2)×2U(<(2)×=U(<(2)×=
(<(2)U(<(2)U(<(2)

− 1a
3
= 0.67 .

Candidate Acceptance. The change in objective is

∆𝑓 = 𝑓(2)-𝑓ABCC"D$ = −0.33 .

Since the new candidate data fits better, it is unconditionally accepted

𝑌ABCC"D$ = 𝑌(2) and 𝑓ABCC"D$ = 𝑓(2) ,

and the best data is updated

𝑌!"#$ = 𝑌ABCC"D$ and 𝑓!"#$ = 𝑓ABCC"D$.

Cooling Schedule. The new temperature 𝑇 is

𝑇(2) = 1 × 0.9 = 0.9 .

Iteration 2.

Candidate Modification. Group 2 is randomly picked and index 4 (value 3) and

index 6 (value 3) are selected. The bounds of possible values to increment index 1

and decrement index 2 are determined 𝛿57D = −2 and 𝛿56& = 2. 𝛿 = 1 is randomly

sampled and added to index 1 and subtracted from index 2. The data is updated

accordingly

𝑌(3) = (3, 2, 1, 4, 3, 2, 4, 4, 4) .

Candidate Evaluation. The value of the objective function is computed

𝑓(3) = _`(<(2)×2U(<(2)×2U(<(2)×=
(<(2)×<

− 1a
3
= 0.33 .

Candidate Acceptance. The change in objective is

∆𝑓 = 𝑓(3)-𝑓ABCC"D$ = −0.34 ,

Since the new candidate data fits better, it is unconditionally accepted

𝑋ABCC"D$ = 𝑋(3) and 𝑓ABCC"D$ = 𝑓(3) ,

and the best data is updated

𝑌!"#$ = 𝑌ABCC"D$ and 𝑓!"#$ = 𝑓ABCC"D$.

Cooling Schedule. The new temperature is

𝑇(3) = 0.9 × 0.9 = 0.81 .

Iteration 3.

Candidate Modification. Group 3 is randomly picked and index 8 (value 4) and

index 9 (value 4) are selected. The bounds of possible values to increment index 8

 20

and decrement index 9 are determined 𝛿57D = −3 and 𝛿56& = 3. 𝛿 = −1 is

randomly sampled and added to index 8 and subtracted from index 9. The data is

updated accordingly

𝑌(<) = (3, 2, 1, 4, 3, 2, 4, 3, 5) .

Final Candidate. In this example, the 𝑡𝑜𝑙𝑒𝑟𝑎𝑛𝑐𝑒 is reached, and the algorithm converges

with an exact match

𝑓(<) = _`(<(2)×2U(<(2)×2U(<(2)×2
(<(2)×<

− 1a
3
= 0 ,

𝑌(<) = 𝑌!"#$.

Finally, the data 𝑌!"#$	is returned to Robin.

Multivariate Distributions

Multiple Linear Regression

Overview. Suppose a published article reports the results of a multiple linear

regression. Besides the descriptive statistics, it states the bivariate 𝑐𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛𝑠,

unstandardized 𝑟𝑒𝑔𝑟𝑒𝑠𝑠𝑖𝑜𝑛	𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡𝑠 with standard errors (𝑆𝐸), and the regression

𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛 or model. The aim is to reconstruct an underlying data set whose values exactly

reproduce these reported summary estimates. Thus, the multiple linear regression (LM)

module reconstructs the full joint data matrix 𝑊 = (𝑋, 𝑌), where the design matrix

𝑋	(𝑁 × 𝑝) may include 𝑝 continuous predictors, dummy-coded variables, and/or interaction

terms, and the outcome vector 𝑌	(𝑁 × 1) contains the criterion values. The data simulation

needs to be performed so that the estimated 𝑚𝑒𝑎𝑛𝑠, 𝑆𝐷, 𝑟𝑒𝑔𝑟𝑒𝑠𝑠𝑖𝑜𝑛	𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 (𝑏) with

their 𝑆𝐸, and all pairwise 𝑐𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛𝑠 (𝑟) exactly match the supplied target values (for

parameter overview see Table 4). Beyond the curse of high dimensionality (see Appendix A

for details), the problem is inherently multi-objective: a modification that improves the match

with one target (e.g., a predictor 𝑚𝑒𝑎𝑛) can simultaneously worsen fit on another (e.g., a

𝑟𝑒𝑔𝑟𝑒𝑠𝑠𝑖𝑜𝑛	𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 or 𝑐𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛), producing a highly nonconvex objective surface

with deep local minima and lack of gradient information. As a result, the optimization

techniques that sufficed for the descriptive and one-way ANOVA modules cannot converge

here, and even advanced meta-heuristic algorithms routinely fail to locate a global solution

that satisfies all objectives simultaneously.

 To overcome these challenges, the LM module transforms the original mixed‐numeric

optimization into a sequential, two‐stage procedure. Because each column’s sample 𝑚𝑒𝑎𝑛

and 𝑆𝐷 in the joint data matrix 𝑊 are invariant under any permutation of its entries, whereas

 21

𝑏, 𝑆𝐸, and 𝑟, are not, I first apply the descriptive module to simulate each column 𝑗 of W (𝑗 =

𝑝 + 1) so that 𝑚𝑒𝑎𝑛 and 𝑆𝐷 of the predictor(s) and criterion match the target values. With

these marginal distributions fixed, I hold 𝑌 constant and restate the optimization problem as

finding within-column permutations 𝜋J of each 𝑋J that minimizes the deviation of the

resulting 𝑏, 𝑆𝐸, and 𝑟 from their supplied summary estimates. Thus, the criterion values are

set while predictor values are permuted. This makes the meta‐heuristic simulated annealing

framework (Kirkpatrick et al., 1983) an ideal choice: it can efficiently approximate the global

optimum in high-dimensional permutation problems (Gutjahr, 2011; Korte & Vygen, 2018).

Candidate Initialization. In a first step, the user needs to apply the descriptive

module to predictor(s) and criterion variable to produce an optimized data matrix 𝑊 which

matches the 𝑡𝑎𝑟𝑔𝑒𝑡	𝑚𝑒𝑎𝑛𝑠 and 𝑆𝐷. This matrix is subsequently handed off to the LM

module, where candidate initialization simply splits 𝑊 into 𝑌	(the criterion) and 𝑋	(the initial

candidate). By anchoring on 𝑊, I eliminate the need to re-optimize descriptive statistics and

smoothly transition into the LM module, and thus, the combinatorial optimization.

Candidate Modification. Candidates are modified by stochastic search moves that

permute 𝑋 either globally across all rows or locally between two rows in a single column.

While global moves enhance the algorithm’s ability to quickly explore diverse regions of the

solution space and escape suboptimal configurations effectively, local moves generate fine-

grained adjustments that progress slowly towards optima. At each iteration 𝑡, the algorithm

decides whether to perform a global or a local move according to a fixed probability

𝑝𝑟𝑜𝑏	𝑔𝑙𝑜𝑏𝑎𝑙	of choosing a global move (default is . 05). The algorithm performs a global

move by choosing a random permutation 𝜋 of {1, … , 𝑁} and setting

𝑋($U2) = 𝜋t𝑋($)u ,

which reorders all 𝑁 rows at once while keeping 𝑌 constant. Otherwise, a local move is

executed: a predictor column 𝑗 and two distinct row indices 𝑖 ≠ 𝑘 are selected and the swap

𝑋7,J
($U2) = 𝑋W,J

($) , 𝑋W,J
($U2) = 𝑋7,J

($) ,

leaves every other entry unchanged. As both move types only permute entries within each

column, they exactly preserve the estimated 𝑚𝑒𝑎𝑛𝑠 and 𝑆𝐷 while combining global jumps

with fine local refinements.

Candidate Evaluation. Each candidate is scored by an objective function 𝑓(𝑊) that

combines the RMSE of the candidate’s correlations 𝑟̂, regressions 𝑏y, and SE 𝑆𝐸� , against the

target summaries 𝑟$6C4"$, 𝑏$6C4"$, and 𝑆𝐸$6C4"$. First, I compute the candidate correlation

matrix from the joint 𝑊(𝑋, 𝑌) matrix via linear matrix algebra. I use the upper triangle values

 22

and round it to the same precision as its target, yielding the vector 𝑟̂ = (𝑟̂2, … , 𝑟̂5), where 𝑚

is the number of elements in the upper triangle of the correlation matrix. The correlation

RMSE is

𝑅𝑀𝑆𝐸C = _ 2
5
∑ (𝑟̂ − 𝑟$6C4"$)35
7L2 ,

where missing targets are omitted from the summations. To obtain the estimated coefficient

vector 𝑏y and 𝑆𝐸 vector 𝑆𝐸� I calculate the OLS solution given 𝑊	(𝑋, 𝑌) via matrix algebra

(see Appendix D for details). To prevent inflated deviance due to spurious precision, 𝑏y and

𝑆𝐸� are rounded to the same precision as the reported summary estimates. Finally, I compute

 𝑅𝑀𝑆𝐸!,:K = _2
X
∑ �`𝑏yJ − 𝑏J

$6C4"$a
3
+ `𝑆𝐸�J − 𝑆𝐸J

$6C4"$a
3
�X

JL2 ,

omitting missing targets, and I define the objective function

𝑓(𝑊) = 𝜔C𝑅𝑀𝑆𝐸C + 𝜔!,:K𝑅𝑀𝑆𝐸!,:K ,

where the weights reflect relative importance of matching 𝑐𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛𝑠 versus

𝑟𝑒𝑔𝑟𝑒𝑠𝑠𝑖𝑜𝑛/𝑆𝐸 outputs. The value of 𝑓(𝑊) thus provides a unified measure of a candidate’s

deviation from all reported summary statistics, with lower values indicating closer agreement

across 𝑐𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛𝑠, 𝑟𝑒𝑔𝑟𝑒𝑠𝑠𝑖𝑜𝑛	𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡𝑠, and 𝑆𝐸𝑠, without calculating gradients or

posing convexity assumptions.

Acceptance Criteria. For integer and continuous data, candidate updates follow a

simulated‐annealing scheme (see Appendix C for details).

Table 4

Parameter Overview for the LM Module: Reported Summary Estimates, Algorithm

Hyperparameters in the ShinyApp and Package-Only Hyperparameters

Parameter Description

Correlation The vector containing the upper triangle of the reported bivariate

correlation matrix.

Regression-

Coefficient

The vector containing the target regression coefficients including the

intercept.

SE The vector containing the target SE of regression coefficients including

the intercept.

Equation The formula of the reported regression model.

 23

Tolerance The threshold for the objective function value below which the

optimization will stop.

Max Iterations The maximum number of iterations the algorithm will run each time it

restarts.

Temperature The starting temperature for the simulated annealing, which sets the

initial likelihood of accepting worse solutions in the first start.

Cooling Rate The factor by which the temperature is multiplied after each iteration,

governing how quickly the algorithm reduces its acceptance of worse

solutions.

Max Starts The maximum number of times the optimization algorithm will restart

from the current best solution using reduced initial temperatures.

Hill Climbs The number of hill climbing iterations for further refinement (see

Appendix C for details).

Parallel Start The number of independent runs (parallel or sequential) to simulate

multiple data sets.

Best Solution Return the best matching data set only (otherwise: return all data sets).

Weights The weights multiplied with the regression/ SE and correlation term in

the objective function; adjusting these values can steer the optimization

toward preferred trade‑offs and improve performance. In the ShinyApp

the R function weights_est() can automatically estimate quasi-optimal

objective function weights from each term’s contribution.

Prob Global The probability of applying a global vs. a local search move.

Sim Data While the ShinyApp automatically passes data simulated by the

descriptives module to the LM module, users of the R package must

supply these simulated data manually.

Progress Bar Enable the text progress bar during optimization.

Min Decimals Minimum decimal places for target values’ trailing zeros.

Note. Bold indicates reported summary estimates; italic indicates hyperparameters adjustable

in the ShinyApp; plain text indicates hyperparameters only configurable via the R package.

Example. Robin knows the data (𝑁	 = 	4) come from a Likert scale (𝑟𝑎𝑛𝑔𝑒	1 − 7)

with reported mean 𝜇Y = 2.5 , 𝜇Z = 2.5 and SD 𝜎Y = 1.29 , 𝜎Z = 1.29. The target

 24

𝑐𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛 is 𝑟$6C4"$ = 0 and the intercept and slope are 𝑏=
$6C4"$ = 2.5 , 𝑏2

$6C4"$ = 0

with 𝑆𝐸=$6C4"$ = 1.94 , 𝑆𝐸2$6C4"$ = 0.71. They set the algorithm’s parameters to

𝑊𝑒𝑖𝑔ℎ𝑡𝑠:	𝜔C = 1	,	𝜔!,:K = 2

𝑇𝑜𝑙𝑒𝑟𝑎𝑛𝑐𝑒 = 0.001

𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒	 = 	1

𝐶𝑜𝑜𝑙𝑖𝑛𝑔	𝑅𝑎𝑡𝑒	 = 	0.9

All other parameters = 	𝑑𝑒𝑓𝑎𝑢𝑙𝑡.

DISCOURSE then optimizes the data 𝑋(7), where	𝑖 is the current iteration, to minimize the

objective function 𝑓 and match the reported summary estimates.

Candidate Initialization. The descriptive module simulates data to match 𝑚𝑒𝑎𝑛𝑠 and 𝑆𝐷𝑠

𝑋(=) = (1, 2, 3, 4) , 𝑌 = (1, 2, 3, 4) ,

which results in

𝑟(=) = 1 , 𝑏=
(=) = 2.5 , 𝑏2

(=) = 0 , 𝑆𝐸=
(=) = 1.94 , 𝑆𝐸2

(=) = 0.71 ,

𝑓(=) = 𝜔C𝑅𝑀𝑆𝐸C + 𝜔!,:K𝑅𝑀𝑆𝐸!,:K = 5.80 = 𝑓!"#$ = 𝑓ABCC"D$.

Iteration 1.

Candidate Modification. A global move is randomly chosen. The data is permuted at

random

𝑋(2) = (4, 3, 2, 1) .

Candidate Evaluation. The correlation and regression estimates are computed

𝑟̂(2) = −1 , 𝑏y=
(2) = 5 , 𝑏y2

(2) = −1 , 𝑆𝐸�=
(2) = 0 , 𝑆𝐸�2

(2) = 0 ,

and the value of the objective function is

𝑅𝑀𝑆𝐸C = _ 2
5
∑ (𝑟̂ − 𝑟$6C4"$)35
7L2 = E(−1 − 0)3 = 1 ,

𝑅𝑀𝑆𝐸!,:K = _2
X
∑ �`𝑏yJ − 𝑏J

$6C4"$a
3
+ `𝑆𝐸�J − 𝑆𝐸J

$6C4"$a
3
�X

JL2

= _([(3.[)*U(=(2.\@)*U((2(=)*U(=(=.]2)*

3
= 2.40 ,

𝑓(2) = 𝜔C𝑅𝑀𝑆𝐸C + 𝜔!,:K𝑅𝑀𝑆𝐸!,:K = 1 × 1 + 2 × 2.40 = 5.80 .

Candidate Acceptance. The change in objective is

∆𝑓 = 𝑓(2)-𝑓ABCC"D$ = 0 .

Since the new candidate data does not fit worse, it is unconditionally accepted,

𝑋ABCC"D$ = 𝑋(2) and 𝑓ABCC"D$ = 𝑓(2) ,

while the best candidate remains

 25

𝑋!"#$ = 𝑋(=) and 𝑓!"#$ = 𝑓(=) .

Cooling Schedule. The new temperature 𝑇 is

𝑇(2) = 1 × 0.9 = 0.9 .

Iteration 2.

Candidate Modification. A local move is randomly chosen. Index 1 (value 4) and

index 4 (value 1) are selected and swapped. The data is updated

𝑋(3) = (1, 3, 2, 4) .

Candidate Evaluation. The correlation and regression estimates are computed

𝑟̂(3) = 0.80 , 𝑏y=
(3) = 0.50 , 𝑏y2

(3) = 0.80 , 𝑆𝐸�=
(3) = 1.16 , 𝑆𝐸�2

(3) = 0.42 ,

and the value of the objective function is

𝑅𝑀𝑆𝐸C = E(0.80 − 0)3 = 0.80 ,

𝑅𝑀𝑆𝐸!,:K = _(=.[=(3.[)
*U(2.2?(2.\@)*U(=.^=(=)*U(=.@3(=.]2)*

3
= 1.63 ,

𝑓(3) = 1 × 0.80 + 2 × 1.63 = 4.06 .

Candidate Acceptance. The change in objective is

∆𝑓 = 𝑓(3)-𝑓ABCC"D$ = −1.74 .

Since the new candidate data fits better, it is unconditionally accepted

𝑋ABCC"D$ = 𝑋(3) and 𝑓ABCC"D$ = 𝑓(3) ,

and the best data is updated

𝑋!"#$ = 𝑋ABCC"D$ and 𝑓!"#$ = 𝑓ABCC"D$.

Cooling Schedule. The new temperature is

𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒(3) = 0.9 × 0.9 = 0.81 .

Iteration 3.

Subsequent iterations continue the same until either the 𝑡𝑜𝑙𝑒𝑟𝑎𝑛𝑐𝑒 or

𝑚𝑎𝑥	𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 are reached.

Final Candidate. In this example, further updates eventually yield

𝑋(∗) = (3, 1, 4, 2) = 𝑋!"#$

and the algorithm converges with an exact match

𝑟̂(∗) = 0 , 𝑏y=
(∗) = 2.50 , 𝑏y2

(∗) = 0 , 𝑆𝐸�=
(∗) = 1.94 , 𝑆𝐸�2

(∗) = 0.71 ,

𝑓(∗) = 1 × E(0 − 0)3 + 2 × _(3.[(3.[)*U(2.\@(2.\@)*U(=(=)*U(=.]2(=.]2)*

3
= 0 .

Finally, the data 𝑊(∗) = (𝑋!"#$, 𝑌)	is returned to Robin.

 26

Linear Mixed Effects Regression

Overview. Suppose a published article reports the results of a linear mixed-effects

(LME) regression. Besides the descriptive statistics (of data in the wide format), it states the

bivariate 𝑐𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛𝑠 of variables in the long format, unstandardized	𝑟𝑒𝑔𝑟𝑒𝑠𝑠𝑖𝑜𝑛

𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡𝑠 with 𝑆𝐸, and the regression 𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛 or model. The aim is to reconstruct an

underlying data set whose values exactly reproduce these reported summary estimates. Thus,

the LME module simulates a complete repeated‐measures data set 𝑊_`D4 = (𝑋, 𝑌). 𝑋 is a

design matrix containing both, 𝑝! between-subject predictors and 𝑝a within-subject

predictors (time-indexed 𝑡, measured at 𝑚 occasions), and 𝑌 is the unidimensional outcome

vector of length 𝑁 ×𝑚. Each marginal 𝑚𝑒𝑎𝑛 and 𝑆𝐷 of columns of the data in wide format

𝑊a7O" is required to match the targets. I optimize for the fixed-effect	𝑟𝑒𝑔𝑟𝑒𝑠𝑠𝑖𝑜𝑛

	𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡𝑠 (𝑏) with their 𝑆𝐸 as well as the random-intercept SD (𝜏) and all pairwise

𝑐𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛𝑠 (𝑟), so that they align with the specified summary estimates from a mixed

model fit (for parameter overview see Table 5). Note that nested multilevel data can be

optimized as well, since its statistical modelling framework can be identical to that for

repeated measures (Snijders & Bosker, 2012). No random slope input is implemented yet.

To deal with the rugged and high dimensional search space (see Appendix A for

details), the LME module adopts a two-step strategy. Analogous to the LM module, I first

invoke the descriptive module to generate each column of the data in wide format 𝑊a7O" so

that sample 𝑚𝑒𝑎𝑛𝑠 and 𝑆𝐷 are matching. With these marginals held fixed, I then transform

the data in the long format and optimize the data for remaining targets, 𝑏, 𝑆𝐸, 𝜏, and 𝑟 as

objectives on the joint distribution 𝑊_`D4. Each search move preserves column-wise

marginals in 𝑊a7O", while altering mixed-model estimates of 𝑊_`D4 in an effective way.

Thus, I use a simulated‐annealing meta‐heuristic to find a global best solution in the

permutation space (Gutjahr, 2011; Kirkpatrick et al., 1983; Korte & Vygen, 2018).

Candidate Initialization. In a first step, the user needs to apply the descriptive

module to simulate each column of 𝑊a7O" so that its sample 𝑚𝑒𝑎𝑛𝑠 and 𝑆𝐷 match the

reported summary estimates for both 𝑝! and 𝑝a as well as the outcome. This matrix is

subsequently handed off to the LME module where candidate initialization converts it to long

format 𝑊_`D4, resulting in 𝑁 ×𝑚 rows with columns for the subject identifier 𝐼𝐷, 𝑡𝑖𝑚𝑒, 𝑝!,

𝑝a, and outcome 𝑌. The resulting long-form table served directly as the initial search

candidate, thereby guaranteeing that all univariate moment constraints held a priori. By

 27

anchoring the initialization in these marginals, the subsequent combinatorial optimization

could focus exclusively on achieving the target mixed-effects parameters.

Candidate Modification. Candidates in the LME module are transformed to 𝑊a7O"

and updated by within-column permutations guided by four types of stochastic and

combinatorial search moves: local move, k-cycle, tau reorder, and residual swap. Together

they ensure both broad exploration and fine-grained refinement of the solution. At each

iteration 𝑖, the algorithm decides what move to perform. This is governed by adaptive

probabilities which linearly shift over iterations from specified start to end values. The local

move is similar to the one in the LM module, which swaps two values within a column of

𝑊a7O".

The algorithm performs a k-cycle by choosing a column 𝑗 and drawing a cycle of

length 𝑘 from (3… ,𝑚𝑎𝑥𝐾) where 𝑚𝑎𝑥𝐾 = max `3, �b
@
�a. Let

𝑆 ⊆ (1,… ,𝑁)	 , |𝑆| = 𝑘 ,

be the set of 𝑘 distinct subject indices and let 𝜋 be a random permutation on 𝑆, with

corresponding permutation matrix 𝑃c. The candidate update is

𝑊:,J
a7O"(7U2) = 𝑃c `𝑊:,J

a7O"(7)a ,

which reorders 𝑘 rows at once while keeping all other entries of 𝑊a7O" constant. This mid‐

scale rearrangement is beneficial because it enables the algorithm to escape local minima by

exploring larger novel configurations compared to the local move.

The next two moves are designed to increase and decrease the random intercept

variance, respectively. When the tau reorder is selected, a single outcome time column 𝑡∗ is

randomly chosen from the set of repeated-measure time points 𝑡2, … , 𝑡5. Let

𝑦�#($
∗ =

1
𝑚 − 1� 𝑦#,$

(7)

d∗

be the mean outcome for subject 𝑠 across all time points except 𝑡∗, and

𝕧(7) = `𝑦2,$
(7), … , 𝑦b,$

(7)a

the vector of outcomes at 𝑡∗. Denote by 𝜋 the permutation (matrix 𝑃c) that sorts 𝕧(7) into

ascending order of the ranks of t𝑦�#($
∗u. The update is

𝑦,$∗
(7U2) = 𝑃c𝑦,$∗

(7) ,

with all other columns of 𝑊a7O" held fixed. By reassigning the values at 𝑡∗ to match the

ordering of each subject’s off-time mean, participant observations become more internally

homogenous, thus increasing the random intercept variance 𝜏.

 28

When chosen, the residual swap selects a column j of 𝑊a7O" at random. For each

subject 𝑠, compute its mean trajectory

𝜇# =
2
5
∑ 𝑊#,$

a7O"(7)5
7L2 ,

let the residual be

𝜀 = 𝜇# − 𝜇̅ , 𝜇̅ = 2
b
∑ 𝜇#b
#L2 ,

and define the high and low sets of subjects by residuals

𝐻 = (𝑠 ∶ 𝜀# > 0) , 𝐿 = (𝑠 ∶ 𝜀# ≤ 0) .

Sample one subject

𝑝 ∈ 𝐻 with 𝑃𝑟(𝑝 = 𝑠) ∝ 𝜀# for 𝑠 ∈ 𝐻 ,

and another subject

𝑞 ∈ 𝐿 with 𝑃𝑟(𝑞 = 𝑠) ∝ −𝜀# for 𝑠 ∈ 𝐿 .

Then swap their values in column 𝑗

𝑊e,J
a7O"(7U2) = 𝑊X,J

a7O"(7) , 𝑊X,J
a7O"(7U2) = 𝑊e,J

a7O"(7) ,

leaving all other entries of 𝑊a7O" unchanged. By exchanging high- and low-residual

observations across two subjects (with regard to repeated measures), participants become

more internally heterogeneous, thus decreasing the random intercept variance.

Collectively, these four permutation‐based moves guarantee exact preservation of

each column-wise distribution (wide data generated by descriptives module) while inducing

fine local tweaks to mid‐scale cycles and targeted variance adjustments. By balancing broad

exploration with focused exploitation, the algorithm ensures thorough mixing of the search

space and converges toward solutions that satisfy both the marginal and mixed‐model targets.

Candidate Evaluation. Each candidate data matrix 𝑊_`D4 is scored by an objective

function 𝑓(𝑊) that combines the RMSE of the candidate correlation’s 𝑟̂, regression

coefficients 𝑏y and 𝜏̂, and SE 𝑆𝐸� , against the target summaries 𝑟$6C4"$, 𝑏$6C4"$, 𝜏$6C4"$, and

𝑆𝐸$6C4"$. First, I compute the candidate correlation matrix from the 𝑊_`D4 matrix using

linear matrix algebra. I extract the upper triangle values and round it to the same precision as

its target, yielding the vector 𝑟̂ = (𝑟̂2, … , 𝑟̂5), where 𝑚 is the number of elements in the upper

triangle of the correlation matrix. The correlation RMSE is

𝑅𝑀𝑆𝐸C = _ 2
5
∑ (𝑟̂ − 𝑟$6C4"$)35
7L2 ,

where missing targets are omitted from the summations. Next, I assess how well the

candidate reproduces the mixed‐effects regression summaries. I fit the specified LME model

 29

to the candidate 𝑊_`D4 using the lme4 package (Bates et al., 2015) as the estimation is non-

trivial to implement using matrix algebra. 𝜏̂3 (instead of 𝜏̂) is calculated as method-of-

moments estimate via ANOVA to allow for negative values if the likelihood-based estimation

gives 𝜏̂3 = 0. All estimates are rounded to the same precision as the corresponding targets.

Let 𝐵 denote the concatenation of 𝑏 and 𝜏3 of length 𝑘 and 𝑆𝐸 all standard errors of 𝑏 of

length 𝑗 = 𝑘 − 1, I compute

𝑅𝑀𝑆𝐸f,:K = _ 2
WUJ

�∑ t𝐵y7 − 𝐵7
$6C4"$u

3
+W

7L2 ∑ t𝑆𝐸�7 − 𝑆𝐸7
$6C4"$u

3J
7L2 � ,

omitting missing targets. Finally, these two RMSE components are combined into the overall

objective

𝑓(𝑊) = 𝜔C𝑅𝑀𝑆𝐸C + 𝜔f,:K𝑅𝑀𝑆𝐸f,:K ,

with specified weights 𝜔C and 𝜔f,:K reflecting the relative importance of reproducing the

marginal correlations versus mixed-model summaries. Lower values of 𝑓(𝑊) indicate closer

agreement across both 𝑐𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛 and 𝑟𝑒𝑔𝑟𝑒𝑠𝑠𝑖𝑜𝑛/𝑆𝐸, guiding the simulated annealing

search towards data that match the target summaries without posing stringent assumptions.

Acceptance Criteria. For integer and continuous data, candidate updates follow a

simulated‐annealing scheme (see Appendix C for details).

Table 5

Parameter Overview for the LME Module: Reported Summary Estimates, Algorithm

Hyperparameters in the ShinyApp and Package-Only Hyperparameters

Parameter Description

Correlations The vector containing the upper triangle of the reported bivariate

correlation matrix of columns in the wide format.

Regression-

Coefficient

The vector containing the target fixed-effect regression coefficients

including the fixed-effect intercept and the last element being the SD of

the random intercept.

SE The vector containing the target SE of fixed-effect regression coefficients

including the intercept.

Equation The formula of the reported mixed effects regression model.

Tolerance The threshold for the objective function value below which the

optimization will stop.

 30

Max Iterations The maximum number of iterations the algorithm will run each time it

restarts.

Temperature The starting temperature for the simulated annealing, which sets the

initial likelihood of accepting worse solutions in the first start.

Cooling Rate The factor by which the temperature is multiplied after each iteration,

governing how quickly the algorithm reduces its acceptance of worse

solutions.

Max Starts The maximum number of times the optimization algorithm will restart

from the current best solution using reduced initial temperatures.

Hill Climbs The number of hill climbing iterations for further refinement (see

Appendix C for details).

Parallel Start The number of independent runs (parallel or sequential) to simulate

multiple data sets.

Best Solution Return the best matching data set only (otherwise: return all data sets).

Weights The weights multiplied with the regression/ SE and correlation term in

the objective function; adjusting these values can steer the optimization

toward preferred trade‑offs and improve performance. In the ShinyApp

the R function weights_est() can automatically estimate quasi-optimal

objective function weights from each term’s contribution.

Move Prob A list with the adaptive probabilities of each move at the ‘start’ and at the

‘end’ of the optimization run.

Sim Data While the ShinyApp automatically passes data simulated by the

descriptives module (wide format) to the LME module, users of the R

package must supply these simulated data manually.

Progress Bar Enable the text progress bar during optimization.

Min Decimals Minimum decimal places for target values’ trailing zeros.

Note. Bold indicates reported summary estimates; italic indicates hyperparameters adjustable

in the ShinyApp; plain text indicates hyperparameters only configurable via the R package.

Example. Robin knows three subjects (𝑁	 = 	3) were measured at three timepoints 𝑡 =

(0,1,2) on a Likert scale (𝑟𝑎𝑛𝑔𝑒	1 − 7) with reported 𝑚𝑒𝑎𝑛𝑠, 𝜇g= = 4.0 , 𝜇g2 = 4.3, 𝜇g3 = 5.0

and 𝑆𝐷 𝜎g= = 2.0 , 𝜎g2 = 1.5, 𝜎g3 = 2.0. Using a linear function of time 𝑡, the target

correlation between	𝑡 and	𝑦 is 𝑟$6C4"$ = 0.3 and the intercept and slope are 𝑏=
$6C4"$ = 3.9 ,

 31

𝑏2
$6C4"$ = 0.5. The random intercept SD is 𝜏 = 1.8 (𝜏3 = 3.3), and the 𝑆𝐸 of the intercept

and slope are 𝑆𝐸=$6C4"$ = 1.1, 𝑆𝐸2$6C4"$ = 0.1. The model is 𝑦	~	𝑡 + (1|𝐼𝐷). They set the

algorithm’s parameters to

𝑊𝑒𝑖𝑔ℎ𝑡𝑠:	𝜔C = 1	,	𝜔!,:K = 1

𝑇𝑜𝑙𝑒𝑟𝑎𝑛𝑐𝑒 = 0.001

𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒	 = 	1

𝐶𝑜𝑜𝑙𝑖𝑛𝑔	𝑅𝑎𝑡𝑒	 = 	0.9

All other parameters = 𝑑𝑒𝑓𝑎𝑢𝑙𝑡.

DISCOURSE then optimizes the data 𝑊(7), where	𝑖 is the current iteration, to minimize the

objective function 𝑓 and match the reported summary estimates.

Candidate Initialization. The descriptive module simulates data to match 𝑚𝑒𝑎𝑛𝑠 and 𝑆𝐷

(excluding 𝐼𝐷 column)

𝑊a7O"(=) =

𝑦_0 𝑦_1 𝑦_2
6 3 7
4 6 3
2 4 5

 ,

which is converted to

 𝑊_`D4(=) =

𝐼𝐷 𝑡 𝑦
1 0 6
1 1 3
1 2 7
2 0 4
2 1 6
2 2 3
3 0 2
3 1 4
3 2 5

and results in

𝑟̂(=) = 0.3 , 𝑏y=
(=) = 3.9 , 𝑏y2

(=) = 0.5 , 𝜏̂3(=) = −0.3 , 	𝑆𝐸�=
(=) = 0.9 , 𝑆𝐸�2

(=) = 0.7 ,

𝑅𝑀𝑆𝐸C = _ 2
5
∑ (𝑟̂ − 𝑟$6C4"$)35
7L2 = E(0.3 − 0.3)3 = 0 ,

𝑅𝑀𝑆𝐸f,:K = _ 2
WUJ

�∑ t𝐵y7 − 𝐵7
$6C4"$u

3
+W

7L2 ∑ t𝑆𝐸�7 − 𝑆𝐸7
$6C4"$u

3J
7L2 � ,

= _(<.\(<.\)*U(=.[(=.[)*U((=.<(<.<)*U(=.\(2.2)*U(=.](=.2)*

<U3
= 1.63 ,

𝑓(=) = 𝜔C𝑅𝑀𝑆𝐸C + 𝜔!,:K𝑅𝑀𝑆𝐸!,:K = 1.63 = 𝑓!"#$.

Iteration 1.

 32

Candidate Modification. A k-cycle is randomly chosen with 𝑘 = 3 and the second

column is randomly selected. The data is permuted

𝑊a7O"(2) =

𝑦_0 𝑦_1 𝑦_2
6 4 7
4 3 3
2 6 5

 ,

and converted to

𝑊_`D4(2) =

𝐼𝐷 𝑡 𝑦
1 0 6
1 1 4
1 2 7
2 0 4
2 1 3
2 2 3
3 0 2
3 1 6
3 2 5

 .

Candidate Evaluation. The correlation and regression estimates are computed

𝑟̂(2) = 0.3 , 𝑏y=
(2) = 3.9 , 𝑏y2

(2) = 0.5 , 𝜏̂3(2) = 0.6 , 𝑆𝐸�=
(2) = 0.9, 𝑆𝐸�2

(2) = 0.6 ,

and the value of the objective function is

𝑅𝑀𝑆𝐸C = _ 2
5
∑ (𝑟̂ − 𝑟$6C4"$)35
7L2 = E(0.3 − 0.3)3 = 0 ,

𝑅𝑀𝑆𝐸f,:K = _ 2
WUJ

�∑ t𝐵y7 − 𝐵7
$6C4"$u

3
+W

7L2 ∑ t𝑆𝐸�7 − 𝑆𝐸7
$6C4"$u

3J
7L2 �

= _(<.\(<.\)*U(=.[(=.[)*U(=.?(<.<)*U(=.\(2.2)*U(=.?(=.2)*

<U3
= 1.23 ,

𝑓(2) = 𝜔C𝑅𝑀𝑆𝐸C + 𝜔!,:K𝑅𝑀𝑆𝐸!,:K = 1 × 0 + 1 × 1.23 = 1.23 .

Candidate Acceptance. The change in objective is

∆𝑓 = 𝑓(2)-𝑓ABCC"D$ = −0.40 .

Since the new candidate data does fit better, it is unconditionally accepted,

𝑊ABCC"D$ = 𝑊(2) and 𝑓ABCC"D$ = 𝑓(2) ,

and the best candidate is updated

𝑊!"#$ = 𝑊ABCC"D$ and 𝑓!"#$ = 𝑓ABCC"D$.

Cooling Schedule. The new temperature 𝑇 is

𝑇(2) = 1 × 0.9 = 0.9 .

Iteration 2.

 33

Candidate Modification. A tau reorder is randomly chosen and the first repeated-

measures column got randomly selected. Row means (and their ranks) are calculated

for the remaining columns

𝑊a7O"(2) =

𝑦_0 𝑦_1 𝑦_2
6 4 7
4 3 3
2 6 5

 ,

𝑅𝑜𝑤𝑀𝑒𝑎𝑛 𝑅𝑎𝑛𝑘
5.5 2
3 1
5.5 3

 ,

and the first column is sorted in ascending order of the ranks

𝑊a7O"(3) =

𝑦_0 𝑦_1 𝑦_2
4 4 7
2 3 3
6 6 5

and converted to

𝑊_`D4(3) =

𝐼𝐷 𝑡 𝑦
1 0 4
1 1 4
1 2 7
2 0 2
2 1 3
2 2 3
3 0 6
3 1 6
3 2 5

 .

Candidate Evaluation. The correlation and regression estimates are computed

𝑟̂(3) = 0.3 , 𝑏y=
(3) = 3.9 , 𝑏y2

(3) = 0.5 , 𝜏̂3(3) = 2.1 , 𝑆𝐸�=
(3) = 1.0, 𝑆𝐸�2

(3) = 0.4 ,

and the value of the objective function is

𝑅𝑀𝑆𝐸C = E(0.3 − 0.3)3 = 0 ,

𝑅𝑀𝑆𝐸f,:K = _ 2
WUJ

�∑ t𝐵y7 − 𝐵7
$6C4"$u

3
+W

7L2 ∑ t𝑆𝐸�7 − 𝑆𝐸7
$6C4"$u

3J
7L2 �

= _(<.\(<.\)
*U(=.[(=.[)*U(3.2(<.<)*U(2.=(2.2)*U(=.@(=.2)*

<U3
= 0.55 ,

𝑓(3) = 1 × 0 + 1 × 0.55 = 0.55 .

Candidate Acceptance. The change in objective is

∆𝑓 = 𝑓(3)-𝑓ABCC"D$ = −0.68 .

Since the new candidate data does fit better, it is unconditionally accepted,

𝑊ABCC"D$ = 𝑊(3) and 𝑓ABCC"D$ = 𝑓(3) ,

and the best candidate is updated

𝑊!"#$ = 𝑊ABCC"D$ and 𝑓!"#$ = 𝑓ABCC"D$.

Cooling Schedule. The new temperature is

 34

𝑇(3) = 0.9 × 0.9 = 0.81 .

Iteration 3.

Candidate Modification. A residual swap is randomly chosen and the third repeated-

measures column got randomly selected. Row means and residuals (compared to the

grand row mean) are calculated

𝑊a7O"(3) =

𝑦_0 𝑦_1 𝑦_2
4 4 7
2 3 3
6 6 5

 ,

𝑅𝑜𝑤𝑀𝑒𝑎𝑛 𝑅𝑒𝑠𝑖𝑑𝑢𝑎𝑙
5 0.6
2.7 −1.7
5.7 1.3

 , 𝑅𝑜𝑤𝑀𝑒𝑎𝑛������������� = 4.4 ,

and one row with a residual larger than zero and another with a residual smaller than

zero are sampled. Here the second and third row are selected and swapped

𝑊a7O"(<) =

𝑦_0 𝑦_1 𝑦_2
4 4 7
2 3 5
6 6 3

and converted to

𝑊_`D4(<) =

𝐼𝐷 𝑡 𝑦
1 0 4
1 1 4
1 2 7
2 0 2
2 1 3
2 2 5
3 0 6
3 1 6
3 2 3

 .

Candidate Evaluation. The correlation and regression estimates are computed

𝑟̂(<) = 0.3 , 𝑏y=
(<) = 3.9 , 𝑏y2

(<) = 0.5 , 𝜏̂3(<) = 0 , 𝑆𝐸�=
(<) = 0.9, 𝑆𝐸�2

(<) = 0.7 ,

and the value of the objective function is

𝑅𝑀𝑆𝐸C = E(0.3 − 0.3)3 = 0 ,

𝑅𝑀𝑆𝐸f,:K = _(<.\(<.\)
*U(=.[(=.[)*U(=(<.<)*U(=.\(2.2)*U(=.](=.2)*

<U3
= 1.49 ,

𝑓(<) = 1 × 0 + 1 × 1.49	 = 1.49 .

Candidate Acceptance. The change in objective is

∆𝑓 = 𝑓(<)-𝑓ABCC"D$ = +0.94 .

Since the new candidate data fits worse, it is accepted with probability

𝑃	 = 	 𝑒((∆F/H(*)) = 0.31 .

 35

Here the draw does not succeed, so the candidate is not accepted

𝑊ABCC"D$ = 𝑊ABCC"D$ and 𝑓ABCC"D$ = 𝑓ABCC"D$,

and the best candidate remains the same.

𝑊!"#$ = 𝑊!"#$ and 𝑓!"#$ = 𝑓!"#$.

Cooling Schedule. The new temperature is

𝑇(<) = 0.81 × 0.9 = 0.73 .

Iteration 4.

Subsequent iterations continue until either the 𝑡𝑜𝑙𝑒𝑟𝑎𝑛𝑐𝑒 or 𝑚𝑎𝑥	𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 are

reached.

Final Candidate. In this example, further updates eventually yield

𝑊a7O"(∗) =

𝑦_0 𝑦_1 𝑦_2
4 4 5
2 3 3
6 6 7

	,

which is converted to

𝑊_`D4(∗) =

𝐼𝐷 𝑡 𝑦
1 0 4
1 1 4
1 2 5
2 0 2
2 1 3
2 2 3
3 0 6
3 1 6
3 2 7

and the algorithm converges with an exact match

𝑟̂(@) = 0.3 , 𝑏y=
(@) = 3.9 , 𝑏y2

(@) = 0.5 , 𝜏̂3(@) = 3.3 , 𝑆𝐸�=
(@) = 1.1, 𝑆𝐸�2

(@) = 0.1 ,

𝑅𝑀𝑆𝐸C = E(0.3 − 0.3)3 = 0 ,

𝑅𝑀𝑆𝐸f,:K = _(<.\(<.\)*U(=.[(=.[)*U(<.<(<.<)*U(2.2(2.2)*U(=.2(=.2)*

<U3
= 0 ,

𝑓(@) = 1 × 0 + 1 × 0	 = 0 .

Finally, the data 𝑊_`D4(∗) = 𝑊!"#$ is returned to Robin.

Performance Enhancement

Performance enhancement in DISCOURSE is achieved through several

complementary strategies. First, an optional objective-weights estimation step is offered,

whereby the relative importance of each term in the objective function is estimated from the

data using Monte-Carlo routines and pilot runs. Second, algorithm hyperparameters such as

 36

temperature schedules and iteration limits can be fine-tuned to the specific characteristics of a

given application. Finally, the underlying implementation leverages parallel computation and

C++ routines to minimize runtime. All of these techniques are described in detail in

Appendix D.

Validation

To validate the DISCOURSE framework, it was applied to benchmark studies for

which the original raw data were available (details below). Only the published summary

statistics (e.g., 𝑚𝑒𝑎𝑛𝑠, 𝑆𝐷, 𝑐𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛𝑠, 𝑟𝑒𝑔𝑟𝑒𝑠𝑠𝑖𝑜𝑛	𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡𝑠, 𝑆𝐸, 𝐹 value) were

supplied to the algorithm, yielding a fully synthetic data set. Convergence was evaluated and

features of the simulated data were compared with those of the original observations across

all four modules. I assessed alignment of both topological characteristics and quantitative

metrics using histograms, bar charts, and partial regression plots (the R scripts are available

on the OSF at https://osf.io/3yjaq/). These results demonstrate that DISCOURSE reliably

simulates data that reproduce published summary estimates.

Descriptives

Benchmark data were drawn from the publicly available data set analysed in Le

Forestier et al. (2024), data available at https://osf.io/t6d5y. Five variables were arbitrarily

selected (named V1, …, V5) to span categorical dummies, integer values, and continuous

measures, ensuring a diverse representation of data types. The descriptives module was

applied and the optimization converged with 𝑡𝑜𝑙𝑒𝑟𝑎𝑛𝑐𝑒 = 𝑒(^, 𝑅𝑀𝑆𝐸	 = 0 for both 𝑚𝑒𝑎𝑛𝑠

and 𝑆𝐷. To assess validity, the distribution and frequencies of all five variables in the

simulated data were compared to the ones in the original data. Figure 2 illustrates that the

distributions produced by the DISCOURSE descriptives module closely match those of the

original data set.

ANOVA

The benchmark data set used here was obtained from the publicly available resource

analysed by Zhang et al. (2025), data available at https://osf.io/6fhev/. I chose two factors

with two groups each, so as to include a between factor (Factor1) and a within factor

(Factor2). The outcome variable contained integer values. I computed 𝐹 values based on the

model 𝑂𝑢𝑡𝑐𝑜𝑚𝑒	~	𝐹𝑎𝑐𝑡𝑜𝑟1 + 𝐹𝑎𝑐𝑡𝑜𝑟2 + 𝐹𝑎𝑐𝑡𝑜𝑟1: 𝐹𝑎𝑐𝑡𝑜𝑟2 + 𝐸𝑟𝑟𝑜𝑟(𝐼𝐷/𝐹𝑎𝑐𝑡𝑜𝑟2). I

then ran the ANOVA module, which converged at a 𝑡𝑜𝑙𝑒𝑟𝑎𝑛𝑐𝑒 = 𝑒(^, yielding an 𝑅𝑀𝑆𝐸	 =

0 for the 𝐹 values. To verify the results, I compared the simulated frequency counts of the

outcome variable against the one in the original data set. As shown in Figure 3, the

 37

Figure 2

Distribution and Frequency of the Variables based on the Original Data (Left Panel) and the

Simulated Data from the Descriptive Module (Right Panel)

 38

distributions generated by the DISCOURSE descriptives module are topologically similar to

the original ones, confirming that the module’s optimization procedure re-constructs

plausible raw data sets.

Figure 3

Frequency of the Outcome Variable in the Subgroups based on the Original Data (Left

Panel) and the Simulated Data from the ANOVA Module (Right Panel)

 39

Multiple Linear Regression

The LM module was applied to the same benchmark data set described in the

descriptives sub-section (Le Forestier et al., 2024) to assess the module’s validity.

𝐶𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛𝑠 were computed and the model 𝑉5	~	𝑉1	 + 	𝑉2	 + 	𝑉3	 + 	𝑉4	 + 	𝑉1: 𝑉3	 +

	𝑉2: 𝑉3 was estimated to derive 𝑟𝑒𝑔𝑟𝑒𝑠𝑠𝑖𝑜𝑛	𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡𝑠 and their 𝑆𝐸. The data simulated

by the descriptives module (in descriptives sub-section) was fed into the LM optimization

together with these summary estimates. After estimating the 𝑤𝑒𝑖𝑔ℎ𝑡𝑠, the algorithm was run

and converged with reaching 𝑚𝑎𝑥	𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠	 = 1𝑒[and achieved 𝑅𝑀𝑆𝐸 < .001 for all

objectives. To evaluate validity, I compared partial regression plots of all six predictor terms

in the simulated data set with those from the original data. As shown in Figure 4, the LM

module reproduces the original distributions almost identically.

Linear Mixed-Effects Regression

I utilized another benchmark data set from Spikman et al. (1999), data available at

https://osf.io/3yjaq/ (this is a perturbed version of the original data). I selected two between-

subject variables (one integer, one dummy), one continuous outcome measured repeatedly at

four time points, and I model time as a predictor using an inverse transformation (to ensure a

linear relationship with the outcome). 𝑀𝑒𝑎𝑛𝑠 and 𝑆𝐷 were calculated based on the data

columns in wide format (across subjects), 𝑐𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛𝑠 were computed based on the data

columns in long format and the random intercept model 𝑉4	~	𝑉1	 + 	𝑉2	 + 	𝑉3	 + 	𝑎𝑔𝑒	 +

	(1	|	𝐼𝐷) was estimated to derive 𝑟𝑒𝑔𝑟𝑒𝑠𝑠𝑖𝑜𝑛 outputs. The LME module was applied as

follows: First, the descriptive module given 𝑚𝑒𝑎𝑛𝑠 and 𝑆𝐷 (moments across subjects and

timepoints) converged with 𝑡𝑜𝑙𝑒𝑟𝑎𝑛𝑐𝑒 = 𝑒(^ yielding both 𝑅𝑀𝑆𝐸	 = 	0 (see Figure 5).

Second, the simulated data was fed into LME’s combinatorial optimization together

with the bivariate 𝑐𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛𝑠, 𝑟𝑒𝑔𝑟𝑒𝑠𝑠𝑖𝑜𝑛	𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡𝑠	including the random intercept

variation, and 𝑆𝐸. After estimating the 𝑤𝑒𝑖𝑔ℎ𝑡𝑠, the algorithm was run in parallel to

capitalize on between run variability and converged with reaching 𝑚𝑎𝑥	𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠	 = 5𝑒<

(𝑡𝑜𝑙𝑒𝑟𝑎𝑛𝑐𝑒	 = 	 𝑒(^) and achieved	𝑅𝑀𝑆𝐸A`C = 0, 𝑅𝑀𝑆𝐸C"4 < .01, and	𝑅𝑀𝑆𝐸:K = 0 for the

objectives. Validity was assessed by comparing the partial‐regression plots for all six

predictors between the simulated and original data sets. As illustrated in Figure 6, the

DISCOURSE LME module closely replicates the original patterns.

 40

Figure 4

Partial Regression Plots of the Variables based on the Original Data (Left Panel) and the

Simulated Data from the LM Module (Right Panel)

 41

Figure 5

Distribution and Frequency of the Variables based on the Original Data (Left Panel) and the

Simulated Data from the Descriptive Module (Right Panel)

 42

Figure 6

Partial Regression Plots, Random Intercept Distribution and Variance Partitioning based on

the Original Data (Left Panel) and the Simulated Data from the LME Module (Right Panel)

 43

Application

As part of the Open Science Collaboration’s large‐scale effort to estimate the

replicability of psychological findings (Open-Science-Collaboration, 2015), many original

data sets remain unavailable. In the study by Reynolds and Besner (2008) on contextual

effects in reading aloud, participants’ response times to exception words and nonwords were

measured under predictable switch and stay sequences to probe dynamic pathway control in

skilled reading. In the following steps, I applied DISCOURSE to demonstrate how it’s

ANOVA module can generate a fully synthetic data set matching the reported summary

estimates. The R scripts are available on the OSF at https://osf.io/3yjaq/ and a tutorial article

can be accessed via https://sebastian-lortz.github.io/discourse/ (for application of the

Descriptives, LM, and LME module, see Appendix E).

I began by extracting the relevant parameters from the article.
N = 16

levels = c(2,2)

target_group_means <- c(543, 536, 614, 618)

factor_type <- c("within", "within")

formula <- outcome ~ Factor1 * Factor2 + Error(ID / (Factor1 *

Factor2))"

integer <- FALSE

target_f_vec <- list(effect = c("Factor1", "Factor2",

"Factor1:Factor2"),

 F = c(30.5, 0.0, 0.2))

Note that Factor2 and the interaction effect are reported as 𝐹	 < 	1, thus, I set arbitrary

values. I then computed a plausible response time bounds [𝐿, 𝑈] from the pooled 𝑀𝑆𝐸	 =

3070 using

𝐿 = min(𝑡𝑎𝑟𝑔𝑒𝑡_𝑔𝑟𝑜𝑢𝑝_𝑚𝑒𝑎𝑛𝑠) − 43 × √𝑀𝑆𝐸; = 370 ,

U = max(𝑡𝑎𝑟𝑔𝑒𝑡_𝑔𝑟𝑜𝑢𝑝_𝑚𝑒𝑎𝑛𝑠) + 3 × √𝑀𝑆𝐸¡ = 785 ,

and define the parameter.
range <- c(370,785)

Next, I ran the ANOVA module with a small 𝑚𝑎𝑥	𝑠𝑡𝑒𝑝 to avoid early convergence given the

coarse target precision and otherwise default hyperparameters.
result.aov <- optim_aov(N = N,

 levels = levels,

 target_group_means = target_group_means,

 target_f_list = target_f_vec,

 factor_type = factor_type,

 44

 range = range,

 formula = formula,

 integer = integer,

max_step = .1,

 tolerance = 1e-8,

 max_iter = 1e3,

 init_temp = 1,

 cooling_rate = NULL)

The optimization converged exactly. Inspecting
summary(result.aov)

DISCOURSE Object Summary

Achieved Loss of Optimization: 0

RMSE of F statistics: 0

Factorial Model:

outcome ~ Factor1 * Factor2 + Error(ID/(Factor1 * Factor2))

Group Means:

[1] 543 536 614 618

confirms that the simulated data reproduce the published cell means and ANOVA output. I

then visualized the error trajectory
plot_error(result.aov)

and illustrated the estimated versus target effects with

 45

plot_summary(result.aov, standardised = FALSE)

Finally, I saved the RMSE and relevant statistics,

get_rmse(result.aov)

$rmse_F

[1] 0

get_stats(result.aov)

$model

Anova Table (Type 3 tests)

Response: outcome

 num Df den Df MSE F ges Pr(>F)

Factor1 1 15 3067.7 30.5232 0.37868 5.829e-05

Factor2 1 15 1555.0 0.0232 0.00023 0.8811

Factor1:Factor2 1 15 2111.6 0.2292 0.00314 0.6390

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

$F_value

[1] 30.52321490 0.02315103 0.22921165

$mean

[1] 543 536 614 618
extracted the simulated data set and inspected its distribution.

data.aov <- result.aov$data

head(data.aov)

 ID Factor1 Factor2 outcome

 46

1 1 1 1 603.3692

2 1 1 2 538.9177

3 1 2 1 656.4115

4 1 2 2 622.3074

5 2 1 1 569.7279

6 2 1 2 576.2693

plot_histogram(data.aov[,4, drop = FALSE])

$outcome

I executed the ANOVA module in multiple parallel runs to quantify both the convergence

variability of RMSE within each run (compared to the target values) and the variability of

RMSE across runs (compared to the average simulated values). I then plotted these RMSE

distributions side-by-side to compare within versus between run variation.

 47

Discussion

The present work introduced DISCOURSE - Data-simulation via Iterative Stochastic

Combinatorial Optimization Using Reported Summary Estimates - as a practical tool for

generating plausible raw data from published summary statistics. By iteratively refining

candidate data sets until their descriptive and inferential statistics match target values, the

algorithmic framework produces underlying data that could plausibly have produced the

original findings. In doing so, the method goes beyond the limited information available in

published articles and enables researchers to conduct follow-up analyses such as multiverse

and many-analyst comparisons. This would otherwise require access to the original raw data.

Importantly, DISCOURSE is distributed both as an R package and via an accessible Shiny

application, balancing immediate usability for applied researchers with the flexibility for

users to fine-tune optimization parameters and explore advanced customization.

Despite its contributions, some limitations merit consideration. First, the vast

heterogeneity of empirical data means that some scenarios may require extensive parameter

tuning to achieve satisfactory accuracy, e.g., adjusting iteration limits, temperature schedules,

and modification probabilities. Although the Shiny app and R package provide diagnostic

outputs to guide these choices, arriving at optimal settings can involve trial and error and

substantial computation time. Second, while DISCOURSE reports the achieved accuracy that

reflects the differences between summary statistics of the simulated data and their targets, it

does not estimate how closely the estimated data mirror the true, unobserved raw data. Thus,

low error in reproducing moments and test statistics guarantees only summary-level accuracy,

not data-level realism. Users should interpret simulated data sets as useful decision-support

tools rather than as definitive reconstructions of original observations. Third, the

combinatorial optimization leveraged in the LM module is based on the implicit assumption

that some combinations of simulated data values from the descriptives module will yield

matching inferential statistics. Therefore, the algorithm may struggle with small sample sizes

because there are insufficient permutations available to identify a satisfactory solution.

Finally, the LME module requires column-wise means and SD for each measurement

occasion (data in wide format), correlations of variables across subjects and measurements

(data in long format), and supports only a single random intercept model. Because most

multilevel studies include random slopes, crossed effects, and rarely publish correlation

structures or the per-occasion descriptives needed for optimization, its direct application

remains confined to a small set of well-reported designs. Future research may expand the

 48

LME module to support random slopes and more complex covariance structures and refine its

optimization algorithms to rely on fewer reported summary estimates.

Beyond replication-study decision making, DISCOURSE holds promise for a variety

of complementary applications. In statistical education, instructors can generate ‘textbook-

exact’ data sets from hypothetical summary scenarios, enabling students to practice analyses

without raising privacy or data-access concerns. Educators might also leverage the

framework to create unique but equivalent data sets for each student, matching the same

summary specifications while preventing academic dishonesty. When privacy concerns

preclude sharing raw data and researchers wish to cut all ties to the original data set, they can

use DISCOURSE to generate synthetic data that mirror the key summary statistics of their

original observations. They can publicly release a fully reproducible data set without

compromising individual confidentiality. Finally, the modular design of the algorithmic

framework invites ongoing methodological development: future extensions could incorporate

additional summary estimates (e.g., effect-sizes, random slopes, or survival curves) or

alternative optimization strategies, broadening applicability across diverse research domains.

In conclusion, DISCOURSE advances an efficient, transparent, and sustainable

approach to synthetic-data generation when original data sets are unavailable. By integrating

robust meta-heuristic optimization routines with accessible interfaces, the framework

empowers researchers to perform analyses on simulated data and inform replication study-

decision making. Although parameter tuning and the inherent uncertainty of data

reconstruction impose natural limits, DISCOURSE represents a substantive step toward more

informed and resource-efficient research practices in the behavioural and social sciences.

Transparency

Conflict of Interest Statement

Sebastian A. J. Lortz declares no potential conflicts of interest with respect to the research,

authorship, and/or publication of this article.

Funding

There is no funding information provided for the author.

Ethical Approval

Ethical approval was not required for this study as it did not include real-world data collection.

Data, Materials, and Online Resources

All materials, data, and R scripts are publicly available on the OSF at https://osf.io/3yjaq/. The

proposed software is open source at https://sebastian-lortz.github.io/discourse/.

 49

Literature

Abdel-Basset, M., Abdel-Fatah, L., & Sangaiah, A. K. (2018). Chapter 10 - Metaheuristic
Algorithms: A Comprehensive Review. In A. K. Sangaiah, M. Sheng, & Z. Zhang
(Eds.), Computational Intelligence for Multimedia Big Data on the Cloud with
Engineering Applications (pp. 185-231). Academic Press.
https://doi.org/10.1016/B978-0-12-813314-9.00010-4

Anaya, J. (2016). The GRIMMER test: A method for testing the validity of reported
measures of variability. PeerJ Preprints, 4, e2400v2401.
https://doi.org/10.7287/peerj.preprints.2400v1

Bardwell, W. A., Ancoli-Israel, S., & Dimsdale, J. E. (2007). Comparison of the effects of
depressive symptoms and apnea severity on fatigue in patients with obstructive sleep
apnea: A replication study. Journal of Affective Disorders, 97(1), 181-186.
https://doi.org/10.1016/j.jad.2006.06.013

Bardwell, W. A., Moore, P., Ancoli-Israel, S., & Dimsdale, J. E. (2003). Fatigue in
obstructive sleep apnea: driven by depressive symptoms instead of apnea severity?
Am J Psychiatry, 160(2), 350-355. https://doi.org/10.1176/appi.ajp.160.2.350

Bates, D., Mächler, M., Bolker, B., & Walker, S. (2015). Fitting Linear Mixed-Effects
Models Using lme4. Journal of Statistical Software, 67(1), 1 - 48.
https://doi.org/10.18637/jss.v067.i01

Bendtsen, C. (2022). pso: Particle Swarm Optimization. In (Version R package version 1.0.4)
https://CRAN.R-project.org/package=pso

Bolland, M. J., Gamble, G. D., Grey, A., & Avenell, A. (2020). Empirically generated
reference proportions for baseline p values from rounded summary statistics.
Anaesthesia, 75(12), 1685-1687. https://doi.org/10.1111/anae.15165

Bordewijk, E. M., Li, W., van Eekelen, R., Wang, R., Showell, M., Mol, B. W., & van Wely,
M. (2021). Methods to assess research misconduct in health-related research: A
scoping review. Journal of Clinical Epidemiology, 136, 189-202.
https://doi.org/10.1016/j.jclinepi.2021.05.012

Brown, N. J. L., & Heathers, J. A. J. (2017). The GRIM Test: A Simple Technique Detects
Numerous Anomalies in the Reporting of Results in Psychology. Social
Psychological and Personality Science, 8(4), 363-369.
https://doi.org/10.1177/1948550616673876

Clerc, M. (2012). Standard Particle Swarm Optimisation. https://hal.science/hal-00764996
Conn, A. R., Scheinberg, K., & Vicente, L. N. (2009). Introduction to derivative-free

optimization. SIAM. https://doi.org/10.1137/1.9780898718768
Delahaye, D., Chaimatanan, S., & Mongeau, M. (2019). Simulated Annealing: From Basics

to Applications. In Handbook of Metaheuristics (pp. 1). https://doi.org/10.1007/978-
3-319-91086-4_1

Derksen, M., Meirmans, S., Brenninkmeijer, J., Pols, J., de Boer, A., van Eyghen, H., Gayet,
S., Groenwold, R., Hernaus, D., Huijnen, P., Jonker, N., de Kleijn, R., Kroll, C. F.,
Krypotos, A.-M., van der Laan, N., Luijken, K., Meijer, E., Pear, R. S. A., Peels,
R.,…de Winter, J. (2024). Replication studies in the Netherlands: Lessons learned and
recommendations for funders, publishers and editors, and universities. Accountability
in research, 1-19. https://doi.org/10.1080/08989621.2024.2383349

Eddelbuettel, D., & Balamuta, J. J. (2018). Extending R with C++: a brief introduction to
Rcpp. The American Statistician, 72(1), 28-36.
https://doi.org/10.1080/00031305.2017.1375990

Eddelbuettel, D., & Francois, R. (2011). Rcpp: Seamless R and C++ Integration. Journal of
Statistical Software, 40(8), 1 - 18. https://doi.org/10.18637/jss.v040.i08

 50

Eddelbuettel, D., & Sanderson, C. (2014). RcppArmadillo: Accelerating R with high-
performance C++ linear algebra. Computational statistics & data analysis, 71, 1054-
1063. https://doi.org/10.1016/j.csda.2013.02.005

Epskamp, S., & Nuijten, M. (2014). statcheck: Extract statistics from articles and recompute
p values (R package version 1.0. 0.). https://cran.r-
project.org/web/packages/statcheck/index.html

Gutjahr, W. J. (2011). Recent trends in metaheuristics for stochastic combinatorial
optimization. Central European Journal of Computer Science, 1(1), 58-66.
https://doi.org/10.2478/s13537-011-0003-3

Harrison, R. L. (2010). Introduction To Monte Carlo Simulation. AIP Conf Proc, 1204, 17-
21. https://doi.org/10.1063/1.3295638

Hartgerink, C., Voelkel, J. G., Wicherts, J. M., & van Assen, M. (2019). Detection of data
fabrication using statistical tools. https://doi.org/10.31234/osf.io/jkws4

Hastings, W. K. (1970). Monte Carlo sampling methods using Markov chains and their
applications. Biometrika, 57(1), 97-109. https://doi.org/10.1093/biomet/57.1.97

Heathers, J. A., Anaya, J., van der Zee, T., & Brown, N. J. (2018). Recovering data from
summary statistics: Sample parameter reconstruction via iterative techniques
(SPRITE). https://doi.org/10.7287/peerj.preprints.26968v1

Ioannidis, J. P. (2008). Why most discovered true associations are inflated. Epidemiology,
19(5), 640-648. https://doi.org/10.1097/EDE.0b013e31818131e7

Ioannidis, J. P. A. (2005). Why Most Published Research Findings Are False. PLoS medicine,
2(8), e124. https://doi.org/10.1371/journal.pmed.0020124

Kennedy, J., Eberhart, R., & Proceedings of, I. I. C. o. N. N. (1995). Particle swarm
optimization. In Proceedings of ICNN'95 - International Conference on Neural
Networks (pp. 1942-1948 vol.1944). https://doi.org/10.1109/ICNN.1995.488968

Kirkpatrick, S., Gelatt, C. D., Jr., & Vecchi, M. P. (1983). Optimization by simulated
annealing. Science, 220(4598), 671-680. https://doi.org/10.1126/science.220.4598.671

Korte, B. H., & Vygen, J. (2018). Combinatorial optimization : theory and algorithms (Sixth
edition ed.). Springer. https://doi.org/10.1007/978-3-662-56039-6

Le Forestier, J. M., Page-Gould, E., & Chasteen, A. (2024). Identity Concealment May
Discourage Health-Seeking Behaviors: Evidence From Sexual-Minority Men During
the 2022 Global Mpox Outbreak. Psychological Science, 35(2), 126-136.
https://doi.org/10.1177/09567976231217416

Lenormand, M., & Deffuant, G. (2013). Generating a Synthetic Population of Individuals in
Households: Sample-Free Vs Sample-Based Methods. Journal of Artificial Societies
and Social Simulation, 16(4), 12. https://doi.org/10.18564/jasss.2319

Meehl, P. E. (1978). Theoretical risks and tabular asterisks: Sir Karl, Sir Ronald, and the slow
progress of soft psychology. Applied and Preventive Psychology, 11(1), 1-1.
https://doi.org/10.1016/j.appsy.2004.02.001

Meehl, P. E. (1990). Why Summaries of Research on Psychological Theories are Often
Uninterpretable. Psychological Reports, 66(1), 195-244.
https://doi.org/10.2466/pr0.1990.66.1.195

Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N., Teller, A. H., & Teller, E. (1953).
Equation of state calculations by fast computing machines. The journal of chemical
physics, 21(6), 1087-1092. https://doi.org/10.1063/1.1699114

Metropolis, N., & Ulam, S. (1949). The Monte Carlo Method. Journal of the American
Statistical Association, 44(247), 335-341. https://doi.org/10.2307/2280232

Miyakawa, T. (2020). No raw data, no science: another possible source of the reproducibility
crisis. Molecular brain, 13(1), 24. https://doi.org/10.1186/s13041-020-0552-2

 51

Nosek, B. A., Hardwicke, T. E., Moshontz, H., Allard, A., Corker, K. S., Dreber, A., Fidler,
F., Hilgard, J., Kline Struhl, M., Nuijten, M. B., Rohrer, J. M., Romero, F., Scheel, A.
M., Scherer, L. D., Schönbrodt, F. D., & Vazire, S. (2022). Replicability, Robustness,
and Reproducibility in Psychological Science. Annual Review of Psychology, 73, 719-
748. https://doi.org/10.1146/annurev-psych-020821-114157

Open-Science-Collaboration. (2015). Estimating the reproducibility of psychological science.
Science, 349(6251), aac4716. https://doi.org/doi:10.1126/science.aac4716

Parsopoulos, K. E., & Vrahatis, M. N. (2002). Recent approaches to global optimization
problems through particle swarm optimization. Natural computing, 1, 235-306.
https://doi.org/10.1023/A:1016568309421

Reynolds, M., & Besner, D. (2008). Contextual effects on reading aloud: Evidence for
pathway control. Journal of Experimental Psychology: Learning, Memory, and
Cognition, 34(1), 50-64. https://doi.org/10.1037/0278-7393.34.1.50

Schimmack, U. (2020). A meta-psychological perspective on the decade of replication
failures in social psychology. Canadian Psychology / Psychologie canadienne, 61(4),
364-376. https://doi.org/10.1037/cap0000246

Selman, B., & Gomes, C. P. (2006). Hill-climbing Search. In Encyclopedia of cognitive
science. https://doi.org/10.1002/0470018860.s00015

Silberzahn, R., Uhlmann, E. L., Martin, D. P., Anselmi, P., Aust, F., Awtrey, E., Bahník, Š.,
Bai, F., Bannard, C., Bonnier, E., Carlsson, R., Cheung, F., Christensen, G., Clay, R.,
Craig, M. A., Dalla Rosa, A., Dam, L., Evans, M. H., Flores Cervantes, I.,…Nosek,
B. A. (2018). Many Analysts, One Data Set: Making Transparent How Variations in
Analytic Choices Affect Results. Advances in Methods and Practices in
Psychological Science, 1(3), 337-356. https://doi.org/10.1177/2515245917747646

Skiena, S. S. (2008). The Algorithm Design Manual. Springer Publishing Company,
Incorporated. https://doi.org/0.1007/978-1-84800-070-4

Snijders, T. A. B., & Bosker, R. J. (2012). Multilevel analysis : an introduction to basic and
advanced multilevel modeling (2nd edition ed.). Sage.

Spikman, J. M., Timmerman, M. E., Zomeren van, A. H., & Deelman, B. G. (1999).
Recovery versus retest effects in attention after closed head injury. J Clin Exp
Neuropsychol, 21(5), 585-605. https://doi.org/10.1076/jcen.21.5.585.874

Steegen, S., Tuerlinckx, F., Gelman, A., & Vanpaemel, W. (2016). Increasing Transparency
Through a Multiverse Analysis. Perspectives on Psychological Science, 11(5), 702-
712. https://doi.org/10.1177/1745691616658637

Templ, M., Meindl, B., Kowarik, A., & Dupriez, O. (2017). Simulation of Synthetic Complex
Data: The R Package simPop. Journal of Statistical Software, 79(10), 1 - 38.
https://doi.org/10.18637/jss.v079.i10

van Ravenzwaaij, D., Bakker, M., Heesen, R., Romero, F., van Dongen, N., Crüwell, S.,
Field, S. M., Held, L., Munafò, M. R., Pittelkow, M. M., Tiokhin, L., Traag, V. A.,
van den Akker, O. R., van 't Veer, A. E., & Wagenmakers, E. J. (2023). Perspectives
on scientific error. R Soc Open Sci, 10(7), 230448.
https://doi.org/10.1098/rsos.230448

Wang, D., Tan, D., & Liu, L. (2018). Particle swarm optimization algorithm: an overview.
Soft Computing : A Fusion of Foundations, Methodologies and Applications, 22(2),
387-408. https://doi.org/10.1007/s00500-016-2474-6

Wicherts, J. M., Borsboom, D., Kats, J., & Molenaar, D. (2006). The poor availability of
psychological research data for reanalysis. Am Psychol, 61(7), 726-728.
https://doi.org/10.1037/0003-066x.61.7.726

Zhang, Y., Jiang, Q., Luo, Y., & Liu, J. (2025). *Can One Donation a Day Keep Depression
Away? Three Randomized Controlled Trials of an Online Micro-Charitable Giving

 52

Intervention. Psychological Science, 36(2), 102-115.
https://doi.org/10.1177/09567976251315679

 53

Appendix A

Search Space Characteristics

Descriptives

If an element in the vector to be optimized can take 𝐾 discrete values, there are 𝐾b

possible ordered vectors, and in the continuous case, the volume of the feasible search space

scales with the side length to the 𝑁th power. In either setting, the number of candidate

solutions (or the space that must be explored) grows exponentially as 𝑁 increases. However,

all permutations of the same multiset give identical means and standard deviations, thus, the

number of distinct multisets of size 𝑁 drawn from 𝐾 values is

tbUh(2b u = (bUh(2)!
b!(h(2)!

	,

which still grows very rapidly in 𝑁. In practice, the algorithm operates on ordered vectors, so

it sees the full discrete 𝐾b (or continuous 𝑁-dimensional) search space, while the objective

function is partially permutation‐invariant.

ANOVA

If each entry of the outcome vector 𝐷 can take 𝐾 discrete values, there are 𝐾b ordered

vectors to explore, and in the continuous case the search region is an 𝑁-dimensional

hypercube whose volume grows as the 𝑁th power of its side length. Unlike the descriptive

module, where permutation invariance of 𝑓 holds across all observations, the 𝐹 statistics and

thus the objective function 𝑓 in the ANOVA modules is invariant only under permutations

within each group. In other words, rearranging the values of 𝐷 inside a group does not affect

𝐹, but swapping values between groups does. Accordingly, the number of distinct

assignments of the D (with repetition allowed) up to this invariance is

∏ `D)Uh(2D)
aj

JL2 ,

where 𝐺 is the number of groups and 𝑛J the size of group 𝑗. Even though this reduces the

search space relative to 𝐾b, in practice the optimizers operate over full discrete 𝐾b (or

continuous 𝑁-dimensional) space.

Multiple Linear Regression

The optimization algorithm must find a solution in an ultra-high-dimensional search

space with the number of dimensions

𝐷 = 𝑁(𝑝 + 1) .

In a purely integer setting with 𝐾 allowable values per cell, there are 𝐾b(eU2) possible data

sets, and in the continuous or mixed setting, the feasible region is the hypercube

 54

[𝑎, 𝑏]b(eU2) ,

whose volume grows exponentially in both 𝑁 and 𝑝.

The reformulation into a permutation problem where 𝑌 is kept fixed (only predictor

values are modified) replaces the continuous hypercube search over [𝑎, 𝑏]b(eU2) with a

discrete permutation space (𝑁!)e, collapsing an uncountable continuum into a finite graph

whose nodes correspond to within‐column re-orderings. Moreover, the resulting search

landscape, while still nonconvex, is defined over a discrete space where each local optimum

is reachable via a sequence of simple transpositions.

Linear Mixed-Effects Regression

The search space to be explored by the optimization process in the LME module is

ultra-high-dimensional with the number of dimensions

𝐷 = 𝑁[𝑝! + (𝑝a + 1)𝑡𝑖𝑚𝑒] .

If the data are solely integer values with 𝐾 allowable values for each element, there are

𝐾b[e/U(e0U2)$75"] possible data sets, and in the continuous or mixed setting, the feasible

region is the hypercube

[𝑎, 𝑏]b[e/U(e0U2)$75"] ,

whose volume grows exponentially in 𝑁, 𝑝!, 𝑝a, and 𝑡𝑖𝑚𝑒. By permuting the entries of each

predictor column (𝑌 is kept fixed) within each subject and time-group (for between-subject

variables, swapping subject profiles), I collapse the infinite continuous search space into a

finite permutation space

(𝑁!)e/Ue0$75" .

Moreover, the resulting search landscape, while still nonconvex, is defined over a discrete

space where each local optimum is reachable via permutations and thus, combinatorial

optimization.

 55

Appendix B

Candidate Handling for Integer Data

Candidate Modification for Integer Data in the Descriptives Module

For integer variables 𝑥 = (𝑥7 , … , 𝑥b) with possible values within allowable bounds

[𝐿, 𝑈] the algorithm applies two types of moves: a purely stochastic move and a heuristic

move. The stochastic move begins with randomly selecting an index 𝑖 of the candidate vector

and determining the allowed integers in the range

𝜈7 = (𝐿, 𝐿 + 1,… , 𝑈)		\		(𝑥7) ,

if 𝜈7 is nonempty, the value 𝑥7 is updated with a uniform random draw from 𝜈7. Because this

update affects only one component and always picks from the allowable support, it preserves

the integer constraints while introducing a purely random perturbation. The move will result

in a change in the objective value by affecting both the 𝑚𝑒𝑎𝑛 and 𝑆𝐷.

The heuristic move is inspired by Heathers et al. (2018) SPRITE algorithm and begins

by computing the current standard deviation 𝑠 of the candidate vector and comparing it to the

target 𝜎: if 𝑠 < 𝜎, the algorithm aims to increase dispersion; if 𝑠 > 𝜎, it seeks to reduce or

maintain it. It then identifies uniformly at random a decrement index 𝑑𝑒𝑐 from 𝑥7 > 𝐿	(when

increasing dispersion, it explicitly excludes the current maximum to avoid shrinking the

empirical extremum), and an increment index 𝑖𝑛𝑐 from 𝑥7 < 𝑈 (when reducing dispersion, it

further restricts these to 𝑥7 < 𝑥O"A). The maximum transferable amount is determined as

𝛿56& = min(𝑥O"A − 𝐿, 𝑈−𝑥7DA) ,

and if 𝛿56& ≥ 1, 𝛿 is uniformly drawn at random from (1, … , 𝛿56&). The values are updated

with

	𝑥O"A = 	𝑥O"A − 	𝛿 , 	𝑥7DA = 	𝑥7DA + 	𝛿 .

If no feasible 𝛿 exists (𝛿56& < 1), the move is aborted. Because each move subtracts and

adds the same mass, the sum of 𝑥, thus its mean, is preserved while its dispersion is nudged

towards 𝜎.

Candidate Initialization for Integer Data in the ANOVA Module

 When dealing with integer data in the ANOVA context, I let

𝑡𝑜𝑡𝑎𝑙J = 𝑡𝑀𝑒𝑎𝑛J × 𝑛J ,

where 𝑡𝑀𝑒𝑎𝑛J is the target 𝑔𝑟𝑜𝑢𝑝	𝑚𝑒𝑎𝑛 and 𝑛J the 𝑠𝑢𝑏𝑔𝑟𝑜𝑢𝑝	𝑠𝑖𝑧𝑒 of group	𝑗. I write

𝑡𝑜𝑡𝑎𝑙J = 𝑞J𝑛J + 𝑟J , 𝑞J = §$`$6_)
D)

¨ , 𝑟J = 𝑡𝑜𝑡𝑎𝑙J 	𝑚𝑜𝑑	𝑛J ,

 56

to construct the vector for subgroups by assigning 𝑞J + 1 to exactly 𝑟J observations and 𝑞J to

the remaining 𝑛J − 𝑟J. Since

t𝑞J + 1u𝑟J + 𝑞Jt𝑛J − 𝑟Ju = 𝑡𝑜𝑡𝑎𝑙J ,

the sample mean for each group is

𝑡𝑀𝑒𝑎𝑛J =
$`$6_)
D)

 ,

and only the two adjacent integer values are used to determine the values for each subgroup.

These are combined into the full initial candidate outcome vector 𝐷, which results (in

conjunction with 𝑀) in means equal to the reported 𝑔𝑟𝑜𝑢𝑝	𝑚𝑒𝑎𝑛𝑠.

 57

Appendix C

Optimization Algorithms

Particle Swarm Optimization

Candidate Modification. For continuous variables, during each iteration, every

particle’s velocity is recomputed as the sum of three contributions: its previous velocity

scaled by an inertia weight, a pull toward its own best‐seen position scaled by a cognitive

weight, and a pull toward the swarm’s global best scaled by a social weight (Kennedy et al.,

1995; Wang et al., 2018). Independent uniform random terms modulate each pull to preserve

exploration. The updated velocity is subsequently added to the particle’s current position to

propose a new point, after which both velocity and position are clipped to the user’s lower

and upper bounds to maintain feasibility (Parsopoulos & Vrahatis, 2002). This loop of

momentum, personal‐best attraction, global‐best attraction, and boundary enforcement is

applied by using psoptim() from the R package pso (Bendtsen, 2022).

Acceptance Criteria. In the continuous‐variable branch, acceptance simply governs

how new positions update each particle’s personal and the swarm’s global best records. After

computing and applying the velocity update, each particle’s new position is 𝑓e. If this value

improves upon the particle’s historical best, 𝑓e < 𝑓e!"#$, the new position is unconditionally

accepted as the updated personal best. Independently, if it also outperforms the swarm’s

current global best, 𝑓e < 𝑓4!"#$, it replaces that record as well (for formal equations see Wang

et al. (2018)). Otherwise, both remain unchanged. This deterministic acceptance rule ensures

that only improvements influence the stored best solutions, while the stochastic velocity

updates continue to drive exploration (Kennedy et al., 1995).

Convergence Criteria. For continuous variables, the convergence relative to the

tolerance is managed by the underlying psoptim() call. As particles evolve, 𝑓4!"#$ is

compared at each iteration to the 𝑎𝑏𝑠𝑡𝑜𝑙 parameter (equal to the user’s 𝑡𝑜𝑙𝑒𝑟𝑎𝑛𝑐𝑒).

Therefore, if 𝑓4!"#$ < 𝑡𝑜𝑙𝑒𝑟𝑎𝑛𝑐𝑒, the optimization converges. Otherwise, the algorithm stops

when it either (a) reaches the maximum number of iterations (𝑚𝑎𝑥𝑖𝑡	𝑃𝑆𝑂) or (b) tracks
56&7$	9:;

<
 consecutive iterations without improvement of 𝑓4!"#$.

Simulated Annealing

Acceptance Criteria. For integer variables, candidate updates follow a simulated‐

annealing scheme (Kirkpatrick et al., 1983). Each proposed candidate is first evaluated by the

objective function, 𝑓A6DO7O6$", and compared to the current state, 𝑓ABCC"D$. If 𝑓A6DO7O6$" <

𝑓ABCC"D$ the move is accepted unconditionally. Otherwise, it is accepted with probability

 58

𝑝 = mint1, 𝑒(F12''$3%(F1&3454&%$) H⁄ u

derived from the original Metropolis-algorithm (Metropolis et al., 1953) and where 𝑇 is the

current 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒. The exponential term yields a probability between zero and one that

decreases both as the deterioration

Δ𝑓 = 𝑓A6DO7O6$" − 𝑓ABCC"D$

grows and as the temperature 𝑇 declines over iterations. 𝑇 gets multiplied by the

𝑐𝑜𝑜𝑙𝑖𝑛𝑔	𝑟𝑎𝑡𝑒 after each iteration. This allows occasional uphill moves, especially at high 𝑇,

and helps escape local minima, while progressively reducing the acceptance of inferior

solutions (for details I refer to Delahaye et al. (2019)). Only accepted improvements

𝑓A6DO7O6$" < 𝑓ABCC"D$ update the recorded best solution; accepted uphill moves merely replace

the current state. Therefore, and as the acceptance probability explicitly depends on the

nonstationary cooling schedule, the search trajectory does not form a Markov chain as in

Metropolis-Hastings sampling (Hastings, 1970).

Hill Climb Optimization

Hill‐climbing is a greedy local search routine that iteratively refines a candidate

solution by exploring its immediate neighbourhood and accepting only those moves that

decrease the objective function (Selman & Gomes, 2006; Skiena, 2008). This low‐memory

strategy converges rapidly to a local optimum but can become trapped without escape

mechanisms, making it well suited for refining the best solutions produced by simulated‐

annealing optimizations.

Candidate Initialization. The hill‐climbing phase begins with the best candidate

𝑋!"#$ obtained from the preceding simulated annealing routine of the LM or LME module. Its

associated best objective value is computed and stored as both the current error 𝑓ABCC"D$ and

the best error 𝑓!"#$. This initialization anchors the local search on the most promising solution

produced by the meta-heuristic optimizer.

Candidate Modification. At each iteration 𝑡, a neighbourhood of size 𝑚 is generated

via repeated application of local moves. When refining the solution from the LM module

(𝑙𝑚𝑒	 = 	𝐹𝐴𝐿𝑆𝐸), the algorithm randomly selects a predictor column 𝑗 and two distinct row

indices 𝑖 ≠ 𝑘, updates the data with the swap

𝑋7,J
($U2) = 𝑋W,J

($) , 𝑋W,J
($U2) = 𝑋7,J

($) ,

leaving every other entry unchanged. The data in long-format 𝑊_`D4 from the LME module

(𝑙𝑚𝑒	 = 	𝑇𝑅𝑈𝐸) is first converted to wide-format 𝑊a7O", and subsequently the same two-

row swap is applied in one randomly chosen column of 𝑊a7O". By restricting each proposal

 59

to a simple swap perturbation, the method systematically explores the immediate vicinity of

the current solution.

Candidate Evaluation. Every proposed neighbour 𝑋 is evaluated by the objective

function 𝑓(𝑋)	of the LM or LME module, respectively. Among the 𝑚 candidates, the current

candidate 𝑋ABCC"D$ with minimal objective value 𝑓ABCC"D$ is selected for possible acceptance.

Acceptance Criteria. The hill climbing optimization is greedy and thus, only if

𝑓ABCC"D$ < 𝑓!"#$ the candidate is updated

𝑋($U2) = 𝑋!"#$ = 𝑋ABCC"D$ and 𝑓($U2) = 𝑓!"#$ = 𝑓ABCC"D$.

Otherwise, the candidate remains unchanged

𝑋($U2) = 𝑋($) and 𝑓($U2) = 𝑓($) .

This strictly greedy acceptance rule guarantees that the error never increases, and the

algorithm moves to a local optimum.

Convergence. After a maximum number of iterations ℎ𝑖𝑙𝑙	𝑐𝑙𝑖𝑚𝑏𝑠, the routine returns

𝑋!"#$ and 𝑓!"#$. By exploiting these fine grained, purely downhill steps, the hill climbing

optimization often achieves further improvements of the solution beyond the reach of

simulated annealing, without requiring gradient information or additional tuning.

 60

Appendix D

Performance Enhancement

OLS Solution for Multiple Linear Regression using Matrix Algebra

To obtain the estimated coefficient vector 𝑏y and SE vector 𝑆𝐸� I calculate the OLS

solution given 𝑊(𝑋, 𝑌) via matrix algebra. Let 𝑋 be the design matrix including the intercept

with 𝑞 free parameters and 𝑌	the outcome vector, I calculate the OLS solution via matrix

algebra to obtain the estimated coefficient vector

𝑏y = (𝑋H𝑋)(2𝑋H𝑌 .

The residual variance is

𝜎ª3 =
t𝑌 − 𝑋𝑏yu

Ht𝑌 − 𝑋𝑏yu
𝑁 − 𝑞

thus, the variance-covariance matrix of 𝑏y is

𝑉𝑎𝑟� t𝑏yu = 𝜎ª3(𝑋H𝑋)(2 ,

so that each standard error is

𝑆𝐸�t𝑏yJu = _«𝑉𝑎𝑟� t𝑏yu¬
JJ

 .

Objective Weights Estimation

The algorithm’s parameters like 𝑚𝑎𝑥	𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠, 𝑚𝑎𝑥𝑖𝑡	𝑃𝑆𝑂, 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒,

𝑐𝑜𝑜𝑙𝑖𝑛𝑔	𝑟𝑎𝑡𝑒, and 𝑚𝑎𝑥	𝑠𝑡𝑎𝑟𝑡𝑠 mainly control accuracy and runtime, and their default values

usually yield reasonable performance on empirical examples. In contrast, the 𝑤𝑒𝑖𝑔ℎ𝑡𝑠, 𝜔2

and 𝜔3, assigned to the objective function 𝑓, directly affect convergence. Poorly chosen

𝑤𝑒𝑖𝑔ℎ𝑡𝑠 can prevent the optimization process from converging within practical time limits,

whereas well-chosen 𝑤𝑒𝑖𝑔ℎ𝑡𝑠 balance the contribution of multiple objective terms

effectively.

Univariate Distribution Weights. While the ANOVA module only has a single

objective (𝐹 values), I automated calibration of the two objective function 𝑤𝑒𝑖𝑔ℎ𝑡𝑠 in the

descriptive module using a Monte-Carlo routine (Harrison, 2010; Metropolis & Ulam, 1949).

That technique requires only input summary estimates, the number of iterations 𝑒𝑠𝑡	𝑖𝑡𝑒𝑟, an

upper bound on weight magnitude 𝑚𝑎𝑥	𝑤𝑒𝑖𝑔ℎ𝑡, and a choice of summary 𝑚𝑒𝑡𝑟𝑖𝑐. For a

variable, the function generates 𝑒𝑠𝑡	𝑖𝑡𝑒𝑟 candidate vectors in accordance with the module’s

random candidate initialization and then computes the 𝑓 error terms in replication 𝑖 by

𝑒%
(7) = 𝜔2EΔ%3 , 𝑒1

(7) = 𝜔3EΔ13 ,

where 𝜔2 = 𝜔3 = 1. For a fixed vector, the ratio of the error terms is defined as

 61

𝜗(7) =
"6
(5)

"7
(5) 𝑖 = 1,… , 𝑒𝑠𝑡	𝑖𝑡𝑒𝑟 .

These ratios are summarized by

𝜗® = 𝑆«t𝜗(7)u "#$	7$"C7L2 ¬ ,

where the 𝑚𝑒𝑡𝑟𝑖𝑐 S is either the mean or median. Clamp 𝜗®	to interval

� 2
M6&	m"74n$

, 𝑀𝑎𝑥	𝑊𝑒𝑖𝑔ℎ𝑡� via

𝜗̅ = min �max `𝜗®, 2
M6&	m"74n$

a ,𝑀𝑎𝑥	𝑊𝑒𝑖𝑔ℎ𝑡� ,

and finally, normalize so that the smaller of the two 𝑤𝑒𝑖𝑔ℎ𝑡𝑠 equals one:

(𝜔2, 𝜔3) =
S2,opT

)qrS2,opT
 .

Inserting these data‐driven 𝜔2 and 𝜔3 in

𝑓(𝑥) = 𝜔2EΔ%3 + 𝜔3EΔ13 ,

ensures that, at the start of optimization, neither optimization target dominates. This largely

eliminates manual trial-and-error and significantly improves convergence reliability with

different reported summary estimates.

Multivariate Distribution Weights. In the LM and LME optimization modules the

two objective 𝑤𝑒𝑖𝑔ℎ𝑡𝑠 refer to the 𝑐𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛 𝜔2 versus the 𝑟𝑒𝑔𝑟𝑒𝑠𝑠𝑖𝑜𝑛/𝑆𝐸 𝜔3 matching

term. To automate the choice of these 𝑤𝑒𝑖𝑔ℎ𝑡𝑠 I developed an estimation routine, which uses

pilot simulation run(s) to calibrate their ratio. For a specified number of sequential runs, each

iteration calls either the LM or the LME module (if 𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙	𝑠𝑡𝑎𝑟𝑡	 > 	1 then

parallel_lm() and parallel_lme() are used in each run), with initial 𝑤𝑒𝑖𝑔ℎ𝑡𝑠 set 𝜔2 =

𝜔3 = 1 and records per iteration 𝑖 the error ratios 𝜗,

𝜗(7) = s'tM:K'
s*tM:K/,9:

 𝑖 = 1,… ,𝑀𝑎𝑥	𝐼𝑡𝑒𝑟 ,

from the optimizer’s trace. To stabilize this estimate, I extract the most recent 𝑝𝑜𝑜𝑙	𝑟𝑎𝑛𝑔𝑒

unique values of 𝜗(7) from each run	𝑗 and compute their mean, yielding a single summary

ratio 𝜗®J. Across all runs, these per-run estimates are then used to obtain the overall calibration

ratio

𝜗̅ = 2
CBD#

∑ 	𝜗®JCBD#
J ,

to account for between run variability. Finally, the 𝑤𝑒𝑖𝑔ℎ𝑡𝑠 are set

(𝜔2, 𝜔3) =
S	op,2T

)qrS	op,2T
 ,

 62

so that the smaller of the two 𝑤𝑒𝑖𝑔ℎ𝑡𝑠 is normalized to one and the other reflects the

estimated scale difference between the two error components near convergence. Inserting

these data‐driven 𝑤𝑒𝑖𝑔ℎ𝑡𝑠 in

𝑓(𝑊) = 𝜔2𝑅𝑀𝑆𝐸C + 𝜔3𝑅𝑀𝑆𝐸!,:K ,

eliminate manual trial-and-error in 𝑤𝑒𝑖𝑔ℎ𝑡 selection and ensures that neither objective term

overwhelms the other and thus, improves convergence reliability.

Algorithm Parameter Tuning

The simulated-annealing framework in each module is governed by four interrelated

tuning parameters which jointly determine the algorithm’s performance. 𝑀𝑎𝑥	𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠

determines the total number of candidate generation steps per restart, with larger values

allowing for more extensive search but increasing runtime linearly. The initial 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒

𝑇= sets the starting acceptance probability of uphill moves: higher 𝑇= encourages broader

traversal of the objective surface, reducing the risk of early entrapment in local minima,

whereas a lower 𝑇=begins the search more greedily. After each iteration 𝑖, the 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒

is updated via

𝑇7 = 𝛼𝑇7(2 𝛼 ∈ (0,1) ,

where the 𝑐𝑜𝑜𝑙𝑖𝑛𝑔	𝑟𝑎𝑡𝑒 𝛼	controls how quickly the algorithm transitions from exploration to

exploitation. A value closer to one slowed the 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 decay, maintaining higher

acceptance of uphill moves for longer, while a smaller value accelerates convergence but

risks premature trapping. Finally, 𝑚𝑎𝑥	𝑠𝑡𝑎𝑟𝑡𝑠	specifies the number of dependent restarts:

upon exhaustion of 𝑚𝑎𝑥	𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 without meeting the convergence 𝑡𝑜𝑙𝑒𝑟𝑎𝑛𝑐𝑒, the

algorithm resets the temperature to 𝑇= 𝑇#° for starts s and begins again from the best candidate

found so far. By tuning these parameters - raising 𝑚𝑎𝑥	𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 and increasing

𝑚𝑎𝑥	𝑠𝑡𝑎𝑟𝑡𝑠	- users can trade additional computation time for greater reliability in locating a

global optimum, whereas more aggressive cooling and temperature favour speed when

approximating solutions.

In practice, it is most effective to begin by extending the total search effort, either by

raising 𝑚𝑎𝑥	𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 or increasing 𝑚𝑎𝑥	𝑠𝑡𝑎𝑟𝑡𝑠 (or both), until the wall-clock runtime

remains acceptable. Once sufficient search depth has been ensured, one can then tune the

cooling schedule: choose a relatively high initial 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 (e.g., 𝑇= ≥ .5) to allow ample

uphill moves during early iterations, and only then experiment with more aggressive

𝑐𝑜𝑜𝑙𝑖𝑛𝑔	𝑟𝑎𝑡𝑒𝑠 to speed convergence. This two-stage approach first guarantees broad

exploration via more iterations or restarts and then refines the exploration vs. exploitation

 63

balance by lowering 𝑇= and/or adjusting the 𝑐𝑜𝑜𝑙𝑖𝑛𝑔	𝑟𝑎𝑡𝑒. Ultimately, this helps avoid the

premature stagnation that often accompanies low-temperature settings in under-resourced

runs.

Computational Efficiency

To accelerate computation, each module supports parallel execution. In the

descriptive module, setting the argument parallel = TRUE initializes a parallel backend,

enabling the optim_vec() function to optimize multiple vectors concurrently. Similarly, the

specialized functions, parallel_aov(), parallel_lm(), and parallel_lme(), are

provided in the ANOVA, linear model, and linear mixed effects modules, respectively. These

functions allow users to generate, optimize, and return multiple data sets from summary

statistics in parallel. When return_best_solution = TRUE, the parallel backend evaluates

all simulated data sets internally and returns the candidate with the lowest objective function

value, ensuring efficient identification of the optimal solution while considering between run

variability.

The repeated evaluation of the objective function is implemented in C++ via the Rcpp

package (Eddelbuettel & Francois, 2011), which compiles critical routines into native code

for execution. Because C++ operates at a lower level than R, providing direct memory

management and more efficient looping and arithmetic (e.g., via the C++ Standard Library

cmath), these core computations run an order of magnitude faster than their R counterparts

(Eddelbuettel & Balamuta, 2018). In addition, the linear algebra operations of the closed form

OLS solution in the LM module are delegated to RcppArmadillo (Eddelbuettel & Sanderson,

2014), a high-performance C++ library optimized for matrix computations. These combined

speedups are especially pronounced when iterating thousands of times to simulate and

optimize large data sets, yielding substantial reductions in total runtime and thus, a noticeably

smoother experience for the user. Although the same C++ infrastructure could be extended to

the ANOVA and LME modules, this enhancement is non-trivial and has not yet been

implemented.

 64

Appendix E

DISCOURSE Application

Descriptives & LM Module

In the replication attempt by Bardwell et al. (2007) patients with obstructive sleep

apnea completed both fatigue and depression scales to examine whether mood symptoms or

apnea severity better predict daytime fatigue. The original study’s (Bardwell et al., 2003) raw

data are not publicly available. Here, I apply the Descriptives and LM module of the

DISCOURSE framework to simulate a synthetic data set that reproduces their reported

summary estimates. The R scripts are available on the OSF at https://osf.io/3yjaq/ and a

tutorial article can be accessed at https://sebastian-lortz.github.io/discourse/.

Step 1. I began by extracting the relevant descriptive parameters from the article.
N = 60

target_mean <- c(48.8, 17.3, 12.6, 10.8)

names(target_mean) <- c("Apnea.1", "Apnea.2", "Depression",

"Fatigue")

target_sd <- c(27.1, 20.1, 11.3, 7.3)

integer = c(FALSE, FALSE, TRUE, TRUE)

range_matrix <- matrix(c(15, 0, 0, 0,

 111, 80.9, 49, 28),

 nrow = 2, byrow = TRUE)

I subsequently estimated the weights
weight.vec <- weights_vec(

 N = N,

 target_mean = target_mean,

 target_sd = target_sd,

 range = range_matrix,

 integer = integer

)

and I ran the Descriptives module with default hyperparameters.
result.vec <- optim_vec(

 N = N,

 target_mean = target_mean,

 target_sd = target_sd,

 range = range_matrix,

 integer = integer,

 obj_weight = weight.vec,

 tolerance = 1e-8,

 max_iter = 1e5,

 65

 max_starts = 3,

 init_temp = 1,

 cooling_rate = NULL

)

The optimization converged exactly. Inspecting
summary(result.vec)

DISCOURSE Object Summary

Achieved Loss of Optimization:

 Apnea.1 Apnea.2 Depression Fatigue

 0 0 0 0

RMSE of Summary Statistics

 Means: 0

 SDs: 0

Means:

 Apnea.1 Apnea.2 Depression Fatigue

 48.77024 17.26942 12.55000 10.83333

SDs:

 Apnea.1 Apnea.2 Depression Fatigue

 27.117733 20.140629 11.329316 7.258348

confirms that the simulated data reproduce the published means and SD. I then visualized the

error trajectories. For example, the error trajectory of the fatigue variable is:
plot_error(result.vec, run = 4)

 66

The estimated versus target descriptives are given by
plot_summary(result.vec, standardised = FALSE)

Finally, I saved the RMSE and relevant statistics,

get_rmse(result.vec)

$rmse_mean

[1] 0

$rmse_sd

get_stats(result.vec)

$mean

 Apnea.1 Apnea.2 Depression Fatigue

 48.77024 17.26942 12.55000 10.83333

$sd

 Apnea.1 Apnea.2 Depression Fatigue

 27.117733 20.140629 11.329316 7.258348

extracted the simulated data set and inspected its distributions and frequencies.
data.vec <- result.vec$data

head(data.vec)

 Apnea.1 Apnea.2 Depression Fatigue

1 38.98685 9.156641 3 3

2 40.31700 61.539320 3 2

3 66.29080 5.880320 10 5

4 42.25313 0.000000 16 16

5 32.68454 1.261708 33 11

6 38.38836 16.411990 8 3

 67

gridExtra::grid.arrange(grobs = plot_histogram(data.vec), ncol = 2)

Step 2. I began by extracting the relevant correlation and regression parameters from

the article and handing off the simulated data from the Descriptives module for further use.
sim_data <- data.vec

target_reg <- c(4.020, 0.023, 0.008, 0.438)

names(target_reg) <- c("Apnea.1", "Apnea.2", "Depression", "Fatigue")

target_se <- c(NA, 0.034, 0.048, 0.066)

target_cor <- c(NA, NA, NA, 0.11, 0.20, 0.68)

reg_equation <- "Fatigue ~ Apnea.1 + Apnea.2 + Depression"

I subsequently estimated the weights
result.weight.lm <- weights_est(

 module = "lm",

 sim_runs = 1,

 sim_data = sim_data,

 reg_equation = reg_equation,

 target_cor = target_cor,

 target_reg = target_reg,

 target_se = target_se,

 tol = 1e-8,

 max_iter = 1e5,

 init_temp = 1,

 cooling_rate = NULL

)

weight.lm <- result.weight.lm$weights

weight.lm

 68

[1] 1.00 1.14

and I ran the LM module with default hyperparameters.
result.lm <- optim_lm(

 sim_data = sim_data,

 reg_equation = reg_equation,

 target_cor = target_cor,

 target_reg = target_reg,

 target_se = target_se,

 weight = weight.lm,

 tol = 1e-8,

 max_iter = 1e5,

 max_starts = 1,

 init_temp = 1,

 cooling_rate = NULL

)

The optimization converged with reaching 𝑀𝑎𝑥	𝐼𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 and 𝑅𝑀𝑆𝐸	 < 	 .01. Inspecting
summary(result.lm)

DISCOURSE Object Summary

Achieved Loss of Optimization: 0.006184284

RMSE of Summary Statistics

 Correlations: 0

 Regression Coefficients: 0.002236068

 Standard Errors: 0.007874008

Regression Model:

"Fatigue ~ Apnea.1 + Apnea.2 + Depression"

Simulated Data Summary:

 Coefficients:

(Intercept) Apnea.1 Apnea.2 Depression

4.020274448 0.025432823 0.007570258 0.433622314

 Std. Errors:

(Intercept) Apnea.1 Apnea.2 Depression

 1.72534792 0.02613568 0.03671927 0.06469461

 Correlations:

 69

[1] -0.13491220 0.02074421 0.28631735 0.10622519 0.20197415

0.68481225

 Means:

 Apnea.1 Apnea.2 Depression Fatigue

 48.77024 17.26942 12.55000 10.83333

 SDs:

 Apnea.1 Apnea.2 Depression Fatigue

 27.117733 20.140629 11.329316 7.258348

confirms that the simulated data closely reproduce the published regression and correlation

parameters. I then visualized the error and error-ratio trajectories
plots <- list(plot_error(result.lm), plot_error_ratio(result.lm))

gridExtra::grid.arrange(grobs = plots, ncol = 2)

and illustrated the estimated versus target descriptives with

plot_summary(result.lm, standardised = FALSE)

 70

Finally, I saved the RMSE and relevant statistics,
get_rmse(result.lm)

$rmse_cor

[1] 0

$rmse_reg

[1] 0.002236068

$rmse_se

[1] 0.007874008

get_stats(result.lm)

$model

Call:

stats::lm(formula = eq, data = data_df)

Coefficients:

(Intercept) Apnea.1 Apnea.2 Depression

 4.02027 0.02543 0.00757 0.43362

$reg

(Intercept) Apnea.1 Apnea.2 Depression

4.020274448 0.025432823 0.007570258 0.433622314

$se

(Intercept) Apnea.1 Apnea.2 Depression

 1.72534792 0.02613568 0.03671927 0.06469461

$cor

[1] -0.13491220 0.02074421 0.28631735 0.10622519 0.20197415

0.68481225

$mean

 Apnea.1 Apnea.2 Depression Fatigue

 48.77024 17.26942 12.55000 10.83333

$sd

 Apnea.1 Apnea.2 Depression Fatigue

 27.117733 20.140629 11.329316 7.258348

extracted the simulated data set and inspected its partial regression plots.

 71

data.lm <- result.lm$data

head(data.lm)

 Apnea.1 Apnea.2 Depression Fatigue

[1,] 39.09125 3.08544358 5 3

[2,] 20.79024 0.05366945 10 2

[3,] 43.52339 0.00000000 5 5

[4,] 42.25313 20.28673143 15 16

[5,] 77.31819 12.12986672 1 11

[6,] 65.55855 9.88781111 3 3

partial.plots <- plot_partial_regression(lm(reg_equation, data.lm))

gridExtra::grid.arrange(grobs = partial.plots, ncol = 2)

I executed the LM module in multiple parallel runs to quantify both the convergence

variability of RMSE within each run (compared to the target values) and the variability of

RMSE across runs (compared to the average simulated values).
result.parallel.lm <- parallel_lm(

 parallel_start = 100,

 return_best_solution = FALSE,

 sim_data = sim_data,

 reg_equation = reg_equation,

 target_cor = target_cor,

 target_reg = target_reg,

 target_se = target_se,

 weight = weight.lm,

 tol = 1e-8,

 72

 max_iter = 1e5,

 max_starts = 1)

I then plotted these RMSE distributions side-by-side to compare within versus between run

variation.
plot_rmse(result.parallel.lm)

LME Module

The application of DISCOURSE’s LME module is necessarily constrained by the

complexity of mixed‐effects models in practice. Unlike simpler designs (e.g., ANOVA or

single‐level regression), real‐world LME models frequently incorporate crossed and nested

random effects, random slopes, and covariance structures that extend beyond a single random

intercept. To maintain computational feasibility, DISCOURSE currently supports designs

with a single random intercept; all random‐slope or more elaborate nesting structures lie

outside its current scope. Moreover, the method presumes that the practitioner has access to

marginal means and standard deviations at each measurement occasion (columns in wide

format). These assumptions are required because, without them, the combinatorial

optimization algorithm cannot isolate the marginal‐ and covariance‐level constraints

necessary to recover a plausible raw data permutation.

To assess the practical relevance of these restrictions, I checked publications

employing and citing the R package lme4 (Bates et al., 2015) for LME analyses in

psychology and the social sciences. Only very few studies used a random intercept model

only, and even less articles reported the per‐time‐point means and standard deviations or

correlations of study variables. Consequently, while the LME module can, in principle,

reconstruct synthetic data sets for single random‐intercept models, its direct application to

most published studies remains limited.

