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Abstract:  

 Speech prosody can convey meaningful information about cognitive and metacognitive 

states, and can be a useful tool for improving Adaptive learning systems. Previous research has 

shown that prosodic cues in speech can serve as predictors of confidence and memory strength. 

In the current study, we mainly examine 1) how speaking speed, intensity and pitch as prosodic 

speech features relate to accuracy and reaction time, as markers of memory strength , and 

subjective confidence during a language learning task, and 2) whether prosodic information 

differs between native and foreign language speech. Participants completed a computer task 

where they learnt a total of 40 simple sentences in Italian, and had to speak out loud the correct 

translation either in Dutch (their Native language) or Italian. The design was bidirectional, with 

the response language switched halfway through the experiment, requiring participants to 

respond in both Italian and Dutch across the separate blocks. Subsequently they reported their 

subjective confidence after each response. The results showed that speaking speed and intensity 

were correlated to accuracy and confidence more strongly than pitch/intonation were. Yet, all the 

three prosodic features we tested showed to be significantly correlated with both accuracy and 

subjective confidence. Additionally, the correlations between the prosodic features, accuracy and 

confidence were higher on average in the Dutch response condition, which may suggest that 

native language is richer in prosodic information. Our findings not only contribute to a deeper 

understanding of  how prosodic features may serve as a predictor of memory strength and 

subjective confidence, but also indicate that the prosodic markers differ between utterances in 

native and newly acquired foreign languages, revealing potential applications for improving 

adaptive learning systems in the context of language learning.  

Keywords: speech, prosody, Adaptive learning systems, memory trace, language learning task. 
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Learning from Speaking: Helping Adaptive Learning Systems learn from Speech Prosody. 

Cognitive science research has demonstrated that human memory is susceptible to rapid 

forgetting, even under optimal learning conditions. That raises the need for strategies that can 

promote durable learning and retention. While many such strategies have been explored, with 

various degrees of success, spacing of study, i.e. spacing out learning and retrieval of the given 

material, was shown to be effective for better long-term knowledge preservation. This strategy 

can be optimal when personalized to the learner’s behavior and needs (Khajah et al., 2014; 

Lindsey et al., 2014, van Rijn et al., 2009). MemoryLab (i.e. SlimStampen) is an adaptive fact-

learning system (ALS) which is found on a similar learning strategy. It continuously adjusts the 

spacing of learning trials within sessions, based on each learner’s estimated memory strength, 

aiming at optimizing retention by scheduling repetitions at the most effective intervals. By 

modelling forgetting and practice dynamics, ALSs show how adaptive learning technologies can 

support individualized learning trajectories and strengthen memory trace, i.e. how well an item 

was remembered (Sense et al., 2021). Notably, such learning systems can be significantly 

beneficial even in short learning sessions, as many vocabulary learning sessions are (Sense & 

van Rijn, 2022).  

To assess the strength of memory encoding, researchers commonly refer to the concept of 

a memory trace, i.e.  how effectively a piece of information has been processed and stored in the 

long-term memory. And how adaptive learning systems determine the memory trace strength, is 

by constructing a single memory strength number each time the learner responds to a given 

tested item. Mostly this memory strength number will be determined by “behavioral proxies”, 

most commonly reaction time and response accuracy, yet relying solely on accuracy in response 

for predicting memory trace strength was shown to have some limitations. Accuracy-based 
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models struggle to account for time-related forgetting, as early frameworks often assumed that 

once an item was answered correctly, it was permanently remembered. Moreover, accuracy does 

not differentiate between strong and weak correct responses, which reduces predictive precision 

and often requires a large number of incorrect responses to adjust performance estimates 

(Wilschut et al., 2023). Alternatively, the memory strength number for memory trace estimation 

can also be inferred from alternative sources, such as learner’s speech and its patterns, which 

may enhance the ALS’s ability to adapt to individual learners' needs in a more efficient way 

(Wilschut et al., 2021, 2023).   

 A person’s speech can convey a lot of meaningful information that is beyond what is 

conveyed by the words alone. That type of information is referred to as the prosody of the 

speech, which can be considered as the variation of acoustic dimensions such as pitch, intensity, 

rhythm, and duration in one’s speech (Xu, 2011). More precisely, speech prosody is the 

suprasegmental properties of speech, arising from time-varying acoustic properties, such as 

fundamental frequency (F0), amplitude, and the duration of speech segments (Cole, 2015). 

Wilschut’s 2021 study formally showed that within learning systems such as SlimStampen, 

speech-based reaction times (RTs), compared to typing-based RTs, offer a more sensitive 

measure of memory retrieval strength. Furthermore, as stated earlier in this paper, information 

from speech is expected to add more valuable information for estimating a more accurate 

memory strength number (Wilschut et al., 2023). This information, used for estimating accuracy 

and confidence, will be useful at home settings as well, as it was found that these patterns in 

prosody are evident even in the absence of social interaction or a human observer (Goupil & 

Aucouturier, 2021). In the current study we will focus on using pitch, intensity, and speaking 

speed as prosodic cues, as we are aiming at replicating Wilschut et al.’s 2025 study, and because 

https://www.zotero.org/google-docs/?PBRlZg
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of the differentiation of intensity and pitch as prosodic markers between speech in native and 

foreign language (van Maastricht et al., 2016). In addition, subjective confidence rating can be a 

good estimation of objective accuracy (Wilschut et al., 2025), which would be an effect of 

interest in our study. Further, the pattern of intonation ending with a falling pitch was shown to 

be significantly correlated with subjective confidence (Goupil & Aucouturier, 2021). Thus we 

will incorporate subjective confidence as a dependent variable in our study.  

Additionally, prosodic information is less reliably informative in speech while 

speaking a foreign language (van Maastricht et al., 2016). Thus we focus on extending on 

Wilschut’s 2025 study as we (1) recruit native Dutch speakers to control for prosodic 

variations that may be present when delivering utterances in a foreign known language, and 

(2) shift from single word cues to simple subject-verb sentences to allow for more prosodic 

variation. We choose to test native Dutch speakers on sentences in the Italian language for 

several reasons. First, Dutch language is chosen as a representative of speech in a native 

language. Second, the Italian language is a Roman language, which is expected to be easier 

for Dutch speakers to learn, while it is not commonly studied in a Dutch school 

environment, reducing the chance of them having significant prior knowledge of this 

language. Additionally, Italian language is classified as non-plastic language, while Dutch is 

classified as plastic, meaning that in Italian prosody is less sensitive or less flexible in 

signaling information structure (i.e. Italian speakers would accent both words in a spoken 

sentence, regardless of their discourse status), whereas in Dutch, prosodic features (accent 

placement and pitch prominence) are flexibly adjusted to reflect discourse-level functions 



6 

 

(Swerts et al., 2002). This differentiation in language direction ,which was not observed in 

previous studies, may convey important cross-linguistic differences in how prosody encodes 

communicative intent and may have implications for future studies examining the cognitive 

and metacognitive contents of speech. Thus, we may encounter some prosodic differences 

between the two conditions (Dutch → Italian; Italian → Dutch). Our bidirectional design is 

expected to account for such language-specific encoding differences. 

 In this paper we will explore how prosodic speech features, in particular intensity, pitch, 

and speaking speed, relate to memory trace in a language learning task. As we are building on 

Wilschut’s (2025) work, we will focus on whether simple subject-verb sentences contain more 

prosodic information than a single word, and whether this information provides more 

informative input for the API. Additionally, we will investigate in what ways prosodic 

information (i.e. as being substantive for the API) may differ between native versus foreign 

spoken language in a language learning task. The difference of performance and task difficulty 

between the different language conditions will also be explored.  

 

2 Methods  

2.1. Participants 

The required sample size was estimated with reference to Wilschut et al.’s paper (2025), 

which this study aims to replicate. Based on an expected effect size, similar to that reported in 

their findings, and assuming our desired significance level of α = .05 and statistical power of 1 – 

β = .80, a minimum of 40 participants was determined to be necessary. A total of 50 participants 

were recruited through the SONA university platform or volunteered. As 2 of the participants’ 
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data was missing, the sample used for the statistical analysis was 48, aged between 18 and 25 (m 

=19.9, sd =1.65), 14 were male and 34 were female.  All of the participants were Bachelor or 

Master students in the University of Groningen, and native Dutch speakers with no prior 

knowledge of Italian, as reported by each participant on the pre-screen questionnaire. None of 

them had reported hearing and/or speech impairments. Participants recruited from SONA 

received course credit for participation. The study was approved by the ethical committee of the 

department of Psychology at the University of Groningen (study approval code: 172 PSY-2223-

S-0257). Written informed consent was obtained from all participants before the start of the 

experiment.  

2.2. Design and Procedure 

 Upon arrival, each participant was asked to fill in an on-paper background questionnaire 

together with the informed consent. The background questionnaire consisted of 6 demographic-

related questions on age, gender, native language, whether the participant has any speech or 

hearing problems that they are aware of, and participants' prior knowledge of Italian, academic 

and non-academic exposure, as well as their proficiency in other Romance languages (Spanish, 

French, Romanian, Portuguese), specifying self-reported proficiency levels (i.e., High-School 

Level). We choose Italian as a second language, as it is typically not offered within the standard 

Dutch high school curriculum, thus there should be a lower on average general familiarity of 

Dutch participants with the Italian language and the set’s psychometric properties (i.e., balanced 

difficulty and answer frequency).  Afterwards participants were asked to sit in the cubicle where 

they were provided with USB headphones and a computer.   

The whole experiment consisted of 7 blocks in total and three phases in total, including a 

practice phase which served to accustom participants to the task. The first phase consisted of 
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only one practice block, which consisted of 4 sentences repeated 3 times each. The following 

two blocks were the actual experiment, and they consisted of 5 sentences each. Each sentence 

was studied 1 time and tested 4 times. For the full structure of the experiment, refer to Figure 1. 

After the first study phase, participants could take a self-paced break followed by the second 

study phase. The test trials were identical to the learning trials, besides that they contained 

different items, with all items presented once, and were followed by feedback. In each block 

participants were presented with individual items of the Dutch-Italian vocabulary set, either 

starting with Dutch to Italian (Condition 1), or starting with Italian to Dutch (Condition 2), on a 

semi-random principle. Every initial presentation of an Italian/Dutch item also presented its 

Dutch/Italian translation. Two sets of 15 sentences were presented in the study, either in the 

Dutch or the Italian condition. They were presented in the same order for each participant (i.e. 

fixed scheduling).  

 Participants were asked to give the correct translation of the item by speaking it out loud. 

The spoken utterance was automatically transcribed to text, using Google's Text-to-Speech 

Assistant, to provide real-time feedback to the learners. Subsequently, participants were asked to 

rate their subjective confidence in the accuracy of the response, using a Likert scale (‘1 = not 

confident’, ‘2 = slightly confident’, ‘3 = moderately confident’, ‘4 = confident’). After the 

confidence rating, feedback was provided in the middle of the screen: ‘Goed!’ if the transcribed 

speech signal matched the given translation, and "Fout", together with the expected correct 

answer. Response times were determined by the time elapsed since the presentation of the item 

and the speech onset. Participants were instructed to directly speak when the microphone icon is 

present on the screen, without pressing any button. At a later stage of data collection, as we 

found that there may be an issue, participants were asked to speak only when they are ready to 
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produce a meaningful word, to avoid any “umm” sounds, which the API detected as a separate 

response and automatically gave feedback on.  Reaction Time was calculated from the very onset 

of the utterance from each participant. For accuracy estimation Levenshtein distance of 2 was 

used as a marker/threshold for determining whether an answer is incorrect. 

Figure 1 

Experiment Design for both Study and Testing trials  
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Note: Panel A shows how the language conditions were constructed. Panel B shows the structure 

of each trial. 

 

2.3. Materials 

 Simple subject-verb sentences in either Dutch or Italian, were used for each trial of the 

experiment. All the sentences were manually created and selected on the basis of their frequency 

score, calculated with the SUBTLEX-NL database (Keuleers et al., 2010). Each sentence 

consisted strictly of a subject (e.g. The child) and a verb in the simple present tense (e.g. runs).  

The experiment was built with JavaScript and HTML5 using the Jatos online experiment 

platform and was conducted in a quiet, sound-insulated lab room. Text and audio items were 

presented to each participant on a computer screen using the MemoryLab adaptive learning 

algorithm software (van Rijn et al, 2009) with fixed scheduling of presenting the items. We used 

Nedis Xyawyon GHST100BK headphones with a built-in microphone, provided to each 

participant to play and record audio, as each headphone set was set to record/reproduce at a fixed 

volume of 30. Each spoken response was transcribed by the Google Speech-to-Text system (link 

to the transcribed responses: data_cleaned_answers_transcriptions). Participants’ speech was 

recorded and saved for later processing, and transcribed to text in real time using the Google 

Web Speech API. The prosodic markers from each recording were extracted and analyzed using 

Praat 6.2 (Boersma, 2007). Narakeet (https://www.narakeet.com/) was the platform we used to 

generate the spoken versions of each of the sentences.  

 3 Results  

 Our aims were to examine the relationship between prosodic speech features and memory 

trace in a learning task, and whether the prosodic information will significantly differ from the 

https://docs.google.com/spreadsheets/d/15JBCPvHQAAI9yMK6QCHA70O4O6YO7PdIyOoTIwEj6SI/edit?usp=sharing
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native language to the foreign language conditions. We started with examining the behavioral 

data of the participants, i.e. accuracy, reaction time, and subjective confidence for each response 

throughout the experiment. The confidence of the API was also inspected, as to control for 

inaccurately assessed accuracy of response. Next, the acoustic data were analyzed separately and 

further added to the behavioral data. Participants’ performance and prosodic information were 

compared between Dutch and Italian response conditions. To assess our first hypothesis, we 

correlated all the 7 dependent variables to each other (i.e. accuracy, RT, subjective confidence, 

speaking speed, intonation and pitch). A Repeated Measures ANOVA was performed to assess 

mainly our second hypothesis. 

3.1. Preliminary analysis and Behavioural Data 

 Throughout the whole study we used Jasp (Version 0.19.3.0; JASP Team, 2025) and R 

(v.4.3.1, R Core Team, 2021) to conduct our analysis. Prior to conducting statistical analysis for 

our dependent variables, the automatic speech recognition system's confidence estimates (i.e., the 

system’s estimate of the probability that a given response was correctly transcribed and 

classified) were examined by calculating the means and standard deviations for this variable in 

JASP. This analysis was conducted as the API performance could be a potential confound 

between accuracy measures and actual performance, thus the need to account for potential 

limitations in the automated accuracy evaluation. Confidence values were calculated for each 

participant as to show an average per condition (i.e. Language). The API confidence was 

computed for the study trials only. The results showed that mean API confidence was higher in 

the Italian response condition (M = 0.961) than in the Dutch response condition (M = 0.795), 

suggesting that the API was better at recognising and correctly classifying responses as 

correct/incorrect in the condition where participants spoke in Italian. There were nine 
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participants for which the mean API confidence on Dutch transcriptions was lower than 0.75, 

primarily due to a small number of trials, for which the API reported very low confidence scores. 

However, we did not discard those trials, as they constituted only a small proportion relative to 

the overall number of trials for which the API was high in confidence. 

 Next, we analyzed the behavioural data separately from the acoustic parameters by 

calculating means for subjective confidence, reaction time, and accuracy, to estimate 

participants’ overall performance and engagement with the task. As expected, reaction time was 

longer in the Italian condition for the testing trials than in the Dutch condition. Yet, the study 

trials for both language conditions had higher average RT, which may be attributed to the 

process of taking time to actually learn the items.  Accuracy was higher in the Dutch condition, 

and very low in the Italian test trials (m = 0.24). Subjective confidence was rated on a scale from 

1 to 4 from each participant. The highest average of reported confidence was for the Dutch study 

(m =  3.83) and testing (m = 3.72 ) trials. Interestingly, confidence and accuracy were 

significantly correlated in both the Dutch (r = 0.49) and Italian (r = 0.48) response conditions 

(see Figure 5).  

All the variables, aside from accuracy, were standardised prior to the ANOVA analysis to 

account for any variation between participants, specifically sex-specific differences in pitch use, 

as it was suggested by previous research that males and females may have distinct prosodic 

strategies to convey confidence (Jiang & Pell, 2017).  

3.2 Acoustic data 

 To analyze the acoustic data and answer our first hypothesis, we created correlation 

matrices for both language conditions, including all the seven dependent variables (see Figure 2). 

Additionally, the variables were analyzed, by conducting a 2x2 RM-ANOVA in JASP (with 
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language and trial type as factors). Violin boxplots for all the dependent variables between the 

two language conditions were created in R for the correct trials only (see Figure 1). A significant 

main effect of language type was found for speaking speed (F(1, 47) = 64.09, p < .001) and 

intensity (F(1, 38) = 5.09, p = .030), but not for average pitch and the change in pitch.  

Intensity 

 The mean intensity varied between 69.31 dB (SD = 1.83) in the Dutch testing trials and 

70.15 dB (SD = 2.97) in the Italian testing trials. The numbers were similar in the study trials of 

both language conditions. Mean intensity showed a moderate correlation with accuracy (r = .36, 

p < .001), and weak correlations with reaction time and confidence. This would suggest that 

louder utterances were more likely to be correct. Interestingly, a significant negative correlation 

was found between average pitch and intensity in both language conditions (see Figure 5). 

Speaking Speed 

 The mean of this variable was 1.57 syl/s (SD = 0.21) in the Dutch testing trials, and 1.71 

syl/s (SD = 0.30) for all the Italian trials. The speech rate was significantly lower in the Dutch 

response condition (M = 1.47, SE = 0.03), compared to the Italian response condition (M = 1.71, 

SE = 0.03). Utterances were significantly slower during study trials (M = 1.53, SE = 0.03) than 

during testing trials (M = 1.64, SE = 0.03). Speaking speed was significantly positively 

associated with accuracy and confidence ratings in both conditions, negatively associated with 

pitch average in both conditions, and with pitch change/slope in the Italian response condition. 

The association with reaction time was negative and significant in the Dutch response condition 

(see Figure 5).  

Pitch Slope and Average Pitch  
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 To estimate pitch variation, we had to calculate its slope and change. The slope/change 

was calculated as we subtracted the average of the last 5 segments, from the average of the first 5 

segments of the signals. The average pitch was calculated for the pitch plotted across 20 

segments (see Figures 2 and 3). Average pitch (see Figures 4F and 4G) displayed a similar 

pattern to intensity and was relatively consistent across all conditions. The group means for 

average pitch ranged from 182.11 Hz (SD = 40.91) in the Dutch testing trials to 185. 03 Hz (SD 

= 44.82) in the Italian testing trials. Average pitch values correlated highest with intensity in both 

language conditions. Change in pitch correlations were significant with subjective confidence in 

both language conditions. (refer to Figure 5). For this variable in particular, we plotted the 

segments of the slope in both language conditions for both subjective confidence (Figure 2) and 

accuracy (Figure 3), to observe whether there are some significant patterns. Notably, for the 

Italian response condition both accuracy and confidence exhibited raising-falling pitch patterns. 

For the Dutch response condition the patterns for confidence and accuracy were similar, as 

incorrect responses followed the pattern of the lowest subjective confidence rating, further 

suggesting a correlation between low accuracy and low confidence.  

Figure 2 

Pitch (z) Across Segments: Dutch (A) vs. Italian (B), as a function of Confidence Levels  
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Note. Panel A shows standardized pitch for Dutch responses and panel B for Italian responses. 

Plotted data included testing trials from the learning phase only. Shaded areas represent 95% 

confidence intervals around the mean pitch (z) estimates, plotted separately for each level of 

confidence ranging from 1 (not confident) to 4 (confident).  

 

Figure 3 

Pitch (z) Across Segments: Dutch (A) vs. Italian (B), as a function of Accuracy 
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Note. Panel A shows standardized pitch for Dutch responses and panel B for Italian responses. 

Plotted data included testing trials from the learning phase only. Shaded areas represent 95% 

confidence intervals around the mean pitch (z) estimates, plotted for correct and incorrect 

responses separately. 

 

3.3. Repeated‑Measures ANOVA: Language and Trial‑Type Effects 

 Repeated‑measures ANOVAs were conducted to assess whether language of responses 

and trial type (study or test) produced significant differences in behavioural and prosodic 

measures. 

 Significant main effects of language emerged for accuracy – F(1, 47)=595.28, p<.001, 

reaction time  F(1, 47)=59.64, p<.001, confidence  F(1, 47)=204.68, p<.001, speaking 

speed  F(1, 47)=64.09, p<.001; and intensity F(1, 38)=5.09, p=.030. In contrast, average pitch and 

pitch change showed no language effect. Accuracy (F(1, 47)=315.37, p<.001), reaction time 
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(F(1, 47)=52.41, p<.001) and confidence (F(1, 47)=11.49, p = .001) all varied significantly with 

trial type, whereas intensity did not (F(1, 38)=0.35, p=.557). Unlike the language factor, trial type 

did influence average pitch (F(1, 38) = 8.04, p =.007) and pitch change (F(1, 38 )= 4.19, p =.048). 

 Significant language and trial‑type interaction effect appeared for accuracy F(1, 47 )= 

235.56, p<.001; reaction time F(1, 47) = 37.93, p<.001; confidence F(1, 47) = 6.19, p = .020; and 

speaking speed F(1, 47) = 16.76, p<.001. Interaction effect was not significant for intensity, 

average pitch, or pitch change.  

3.4. Differences between the language conditions and the trial types. 

 The aforementioned RM-ANOVA test and correlation matrices (see Figure 5) revealed 

several differences between the two language conditions. First, the performance of the 

participants was lower in the Italian response condition, as characterized by behavioural 

measures, i.e. their accuracy scores, reaction times, and evaluated subjective confidence, which 

may suggest they experienced greater difficulty in this condition.  Further, outliers were mostly 

present in the Dutch response conditions, rather than the Italian (see Figure 4), which may be 

connected to the lower API confidence in this condition (M=0.795), yet no participants data were 

removed on that basis. Reaction time was fastest for the Dutch testing condition, and slowest for 

the Italian study condition, and accuracy was highest for the Dutch condition (see Figure 4). 

Confidence ratings were higher in the Dutch response condition as well, while in the Italian these 

ratings were more dispersed. Speaking speed, intensity and pitch average did not show any 

significant variations between the language conditions, yet pitch change/pitch slope shows 

slightly more variation in the Dutch response condition, compared to the pattern in the Italian 

condition (see Figure 4). The correlations between the behavioral measures (accuracy, 

confidence, and RT) and the acoustic data were overall higher in the Dutch response condition, 
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compared to the Italian response condition. An exception were speaking speed and accuracy (see 

Figure 5). 

Figure 4 

Distributions of responses for all 7 dependent variables  

 

Note: Distributions for each variable are split by language response condition and trial type. 

Figure 5 
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Standardised Correlations Matrix for the Both Language Conditions 

 

Note. *p < .05; **p < .01; ***p < .001. 

 

 

Discussion 

The main aim of the current study was to explore the relationship between intensity, pitch 

and speaking speed as prosodic speech features, subjective confidence and memory trace (i.e. 

measured by accuracy and reaction time) in a language learning task, consisting of simple 

subject-verb sentences.We wanted to compare whether prosodic information differs between 

single-word cues, as examined by Wilschut et al. (2025) and Goupil and Aucouturier (2021), and 

simple subject-verb sentences. In addition we aimed at finding whether the language direction, 

i.e. whether a response is spoken in the native or the foreign language, has influence on the 

prosodic information.  
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Upon analyzing the prosodic data, the results revealed a nuanced pattern of relationships 

across the Dutch and Italian response conditions. Intensity and speaking speed generally showed 

significant moderate correlations to accuracy and subjective confidence, similar to Wilschut et al. 

's 2025 study, suggesting that higher intensity in voice and faster speaking speed are generally 

associated with higher accuracy and subjective confidence rates. Yet more specifically, and as 

we compared our findings to Wilschut et al.’s (2025), speaking speed is more associated with 

confidence, while intensity correlates more with accuracy. Pitch values (i.e. pitch change and 

average pitch) showed small yet significant associations with accuracy and confidence, as 

compared to the findings in Wilschut’s 2025 study. Notably, the pitch variation between correct 

and incorrect responses in the Italian response condition did not differ significantly (see Figure 

5). The way we estimated pitch was by dividing each signal to segments, 10 in the beginning and 

10 in the end of the utterance (Section 3, Figure 2). By doing this we might have potentially lost 

some information, which can be accounted for, if pitch is calculated in several ways, which we 

implemented regardless, as we calculated both pitch change and pitch slope. Yet there is a 

chance of missed information in our approach. Future studies can attempt to calculate pitch in 

different ways, to account for such loss of information. On another note, Jiang & Pell (2017) 

showed that generally higher variation in pitch was associated with confident responses. We 

observed overall higher variation for correct responses, especially in the Italian response 

condition, which 1) may be a potential solution for the limitation of variation in pitch calculation 

and 2) confirm the high relation between accuracy and subjective confidence we found.  

It is important to mention here that participants’ confidence ratings were congruent with 

their accuracy, suggesting that subjective confidence evaluation was a good predictor of memory 

trace strength (judging by accuracy and the corresponding reaction times). As previously 
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suggested, a pattern of confident or accurate response, as in our study subjective confidence was 

a good predictor of accuracy, may follow a rising-falling pitch pattern (Goupil & Aucouturier, 

2021), which was evident in the Dutch response condition but not in the Italian response 

condition, which may simply be due to prosodic information being less reliable in speech while 

speaking a foreign language (van Maastricht et al., 2016). Yet that finding can be a potential 

future research direction, as to see whether prosodic information might have been influenced by 

other factors in the foreign language condition, such as the fact that we used an AI speaker. 

Alternatively, the voice of a human native speaker may influence the prosody differently in the 

foreign response condition.  

As we aimed at exploring whether simple sentences contain more prosodic information 

than the single word cues, we explored the correlations between accuracy and each prosodic 

feature. As compared to Wilschut’s 2025 study, the correlations we obtained were overall higher. 

For instance, Wilschut et al. reported a correlation between accuracy and intensity of  r = 0.12 (p 

< 0.001), while we reported a correlation of r =0.36 (p< 0.001) in the Dutch response condition. 

The same pattern was evident for speaking speed, yet not for pitch. Yet, this may suggest that 

simple sentences can convey more prosodic information than single word cues. An improved 

learning system, and potential object for future research in this field, could be a hybrid design, 

where single words and simple sentences are counterbalanced, as the learner starts with learning 

single words and shifts towards sentences, with the help of an adaptive scheduling model. This 

would benefit as it will be a form of spaced learning, which is more beneficial for the learner, 

especially if personalized (Khajah et al., 2014; Lindsey et al., 2014), and as the difficulty will be 

counterbalanced, avoiding the drawback of extensive task difficulty, pointed out by some of our 

participants.  
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As previously discussed, there may be systematic differences in prosodic information 

between response conditions, that is, between spoken responses produced in the native language 

versus those in the foreign language (Swerts et al., 2002; van Maastricht et al., 2016). Indeed, it 

was evident that prosodic features differed between the language response conditions, as the 

prosody in the Dutch response condition had stronger correlations between the memory trace, 

confidence, and the prosodic features, than in the Italian condition. This would suggest that 

indeed speech in the native language (in our case Dutch), is richer in prosodic variation than a 

newly acquired language. Besides being a foreign language, the non-plastic nature of Italian 

might have contributed for less variation in prosody, compared to the plasticity in Dutch 

language (Swerts et al., 2002), as it was previously discussed in the introduction of this paper. 

Thus native speech can be more informative for predicting the learner's performance. Another 

relevant point to consider is that during the debrief sessions, participants commonly reported the 

Italian response condition being more challenging than initially anticipated, which could indicate 

that our design might have been made more complicated than desired. In future research, a 

hybrid design combining elements from the current study and that of Wilschut et al. (2025), may 

be employed to better account for the increased cognitive demands, associated with longer 

linguistic stimuli.  

Aside from our main research aims, we evaluated whether the language learning task was 

appropriately calibrated in terms of difficulty for the participants and whether the automatic 

speech recognition (API) system reliably assessed the correctness of their responses. Regarding 

task difficulty, our findings suggest that the task may have been more challenging than initially 

anticipated. Several participants reported during the debriefing session that the sentences were 

too complex to memorise. This subjective feedback aligns with the objective accuracy and RT 
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measures (see Section 3), which indicated low accuracy levels in the test trials for the Italian 

response condition (M = 0.24). Concerning the reliability of the API system in determining 

response accuracy, we examined the API's confidence scores (see Section 3), which showed 

exceptionally high confidence in the Italian response condition (M = 0.961) and moderate 

confidence in the Dutch response condition (M = 0.795), suggesting that the system's estimations 

of accuracy were generally reliable. However, upon manually inspecting some of the 

transcriptions, particularly within the Dutch response condition, we identified several anomalies, 

including implausible transcriptions that likely did not reflect the participants' actual spoken 

responses. That may suggest the API had difficulty in correctly identifying the accuracy of 

participants’ responses in Dutch, potentially leading to misinterpretations of accuracy estimates 

in this condition, and should be considered when interpreting those results. Indeed, as shown by 

Zhang and colleagues (2025), there are certain low-resource languages, i.e. with which the given 

software has 10h or less of training, that may not have been sufficiently represented or analysed 

by the speech recognition system we used, or the lack of advanced vocabulary data in Dutch 

(Kuhn et al., 2024), thus this potential lack of representation could have contributed to the 

recognition errors we observed. 

Our findings may further facilitate the improvement of speech adaptation within ALSs  

like MemoryLab, which may additionally be beneficial for dyslexia patients (Wilschut et al., 

2025) and practicing speaking skills, an essential part of achieving comprehensive language 

knowledge.  

                                                       Conclusion 

This study investigated which cognitive and metacognitive indicators of memory retrieval 

can be detected in the speech signal during spoken recall. Participants learned vocabulary 
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through verbal retrieval practice, producing responses bidirectionally, either translating from 

Italian to Dutch or vice versa. The findings revealed two main outcomes. First, pitch, intensity 

and speaking speed as prosodic features of speech can be informative of memory trace during a 

language learning task, as well as higher subjectively evaluated confidence being a good 

predictor of accuracy, together with faster reaction time. In addition, we were the first to examine 

the difference of prosodic information between single word and simple subject-verb sentence 

cues, which may contribute to improving the performance of ALS in language learning settings, 

especially if a hybrid model, incorporating both single words and simple sentences, with 

adaptive scheduling, is incorporated. Second, we used a bidirectional design, which revealed that 

the direction of the language of the spoken response did show to be of importance for the 

prosodic information. More specifically, spoken responses in the native language were more 

informative regarding prosodic information than were the responses in the foreign newly 

acquired language. In conclusion, our findings offer valuable insights for the improvement of 

Adaptive learning systems incorporating speech input. Specifically, the inclusion of simple 

sentence structures and native-language responses, appears to enhance the informativeness of 

prosodic features, thereby improving the model's evaluation of memory strength in language 

learning tasks. 
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