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ABSTRACT: 
 

Grasping is a critical motor function that involves complex neuromuscular interactions, 

with significant potential to advance fields such as prosthetics and rehabilitation. This master's 

thesis explores the decoding of grasping-related muscle activations through the application of 

deep and shallow machine learning models. The main objectives were to elucidate the muscular 

mechanisms underlying grasping and to assess the distinguishability of grasp types and object 

properties using electromyography (EMG) signals. EMG data were previously collected from 

16 healthy participants performing tasks with three grasp types (power grasp, five-finger 

precision, two-finger precision) on four objects (large/small cylinders and spheres). The EMG 

analysis was based on five distinct phases of the grasping movement: fixation, observation, 

planning/execution, holding, and releasing. The methodology employed Representational 

Dissimilarity Matrices (RDMs) to evaluate the distinctiveness of muscle activation patterns, 

Linear Discriminant Analysis (LDA) for shallow classification, and Convolutional Neural 

Networks (CNNs) for deep learning-based classification. Key findings indicate that muscle 

activity patterns were most distinct during the holding, planning/execution, and releasing 

phases, with CNNs achieving up to 88.77% accuracy (chance level 33%) in classifying grasp 

types. However, object type classification was less successful (peak accuracy of 43.29%, 

chance level 25%), suggesting that EMG signals better reflect hand configurations than object 

characteristics. These results highlight the efficacy of machine learning in interpreting grasping 

dynamics and point to promising applications in developing advanced prosthetic systems, 

neuromotor rehabilitation, and brain-computer interfaces, offering new avenues to enhance 

motor control technologies. 
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1. Introduction 
 

Grasping, the act of gripping objects, is a fundamental motor skill that requires complex 

interaction between the central nervous system and the muscular system (Castiello, 2005). This 

action, essential in daily life and clinical fields such as rehabilitation and prosthesis 

development, involves the coordination of sensory, cognitive, and motor processes (Jeannerod 

et al., 1994). The importance of studying grasping lies not only in understanding the underlying 

neuromuscular mechanisms but also in its potential practical applications, such as improving 

brain-computer interfaces and motor control systems (Omedes et al., 2018), (Spataro et al., 

2017), (Zhang et al., 2023). Notably, Napier's research revealed that, despite significant 

variations in movement elements like force, posture, duration, and speed, the control principles 

guiding grasping remain strikingly elegant. His work emphasized that the intended purpose of 

an action dictates the grip type, as seen in the distinct grasps used for writing with a pen versus 

placing it into a box (Napier, 1956). 

Building on this foundation, past studies have demonstrated high accuracy in classifying 

different hand grips through the analysis of electromyographic (EMG) activity, as evidenced 

by research such as Miften et al. (2021), who developed a framework for multi-category hand 

grasp classification, Wang et al. (2022), who focused on phase-based grasp classification for 

prosthetic control, and Batzianoulis et al. (2017), who decoded grasp gestures in reaching-to-

grasping motions using EMG signals. This classification accuracy aligns with literature that 

shows the differentiation of EMG activity across various types of grasping. 

While previous studies have successfully classified different hand grips using EMG 

signals, there remains a need to understand the temporal evolution of muscle activity patterns 

across the various phases of grasping and how these patterns are influenced by specific object 

properties and grasp types, which this thesis aims to address through a detailed analysis of EMG 

data using advanced machine learning techniques. 

To analyze in detail the muscular dynamics associated with grasping, electromyography 

(EMG) data is a crucial tool (Grosse et al., 2002). EMG allows for the direct measurement of 

muscle electrical activity during movement, providing insights into muscle activation patterns 

(Day, 2002).  

In this work, we analyzed the EMG data collected during a grasping experiment 

previously reported in Sburlea et al. (2021), where participants performed different types of 

grasps on various objects. Specifically, 12 experimental conditions were considered, resulting 

from the combination of 4 object types (large cylinder - LC, large sphere - LS, small cylinder - 
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SC, small sphere - SS) and 3 grasp types (power grasp, five-finger precision grasp, two-finger 

precision grasp). The EMG data, recorded from 8 channels placed on the arm, were acquired at 

a sampling rate of 200 Hz for a duration of 15 seconds per trial, but only 12 seconds were 

analysed, since the “rest” phase was excluded, resulting in roughly approximately 2400 

samples. These samples were divided into 5 distinct phases: Fixation (0-2 s), Observation (2-5 

s), Planning_Execution (5-8 s), Holding (8-10 s), and Releasing (10-12 s). This temporal 

structure allows for the exploration of muscle activity evolution through the different phases of 

the movement. 

The study of Sburlea et al. (2021) multimodal data was simultaneously collected, 

containing EEG, EMG, and kinematic activity associated with the grasping conditions. Their 

results showed that EEG signals enable the decoding of both the type of grasp (power, five- and 

two-finger precision grasps) and the intrinsic properties of the object (shape and size) in the 

observation, planning/execution and release phases.  

In this study, we aim to gain a better understanding of the muscular mechanisms 

underlying grasping, finding out whether various grip and object types can also be distinguished 

based on data from electromyography EMG signals, and potentially inform future applications 

such as prosthetic control about the features that can lead to good discriminability among 

objects and among grasp types at different movement stages. We set three main research goals. 

First, we will use Representational Dissimilarity Matrices (RDMs) (Kriegeskorte et al., 2008) 

to assess the dissimilarity between the 12 grasping conditions, based on the activity patterns of 

the 8 EMG channels. This analysis provides a detailed picture of the relationships between the 

different combinations of grasp and object. Next, we will employ Linear Discriminant Analysis 

(LDA) (Fisher, 1936), a shallow model, to classify the different grasping conditions. The LDA 

will be trained on a 70-30 split of the data, demonstrating its ability to linearly discriminate 

between classes in multivariate contexts. And, third, we applied Convolutional Neural 

Networks (CNNs) (Krizhevsky et al., 2017), a deep machine learning model, to identify more 

complex and non-linear patterns in the EMG data. CNNs are particularly suitable for analyzing 

temporal and multi-channel signals such as EMG. We hypothesize that during the execution 

and holding stages, decoding performance for grasp types will be higher due to distinct muscle 

activation patterns tied to different hand configurations. Additionally, we expect that object 

properties influencing force or precision requirements will be reflected in the EMG signals, 

particularly during active grasping phases. 

 
My contribution: 
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In summary, since in the research of Sburlea et al. (2021) they focused exclusively on 

the EEG data collected, in this thesis, we analyzed the EMG data collected in their experiment, 

performing the following 3 analyses: 

 

- Representational Dissimilarity Matrix (RDM), which quantifies how different patterns of data, 

in this case, muscle activity, are represented across the 12 grasping conditions and stages of 

movement.  

- Linear Discriminant Analysis (LDA), a shallow machine learning  method used in this study 

to classify both grasp types (power, five-finger precision, two-finger precision) and object types 

(large cylinder, small cylinder, large sphere, small sphere) based on electromyographic (EMG) 

data. 

- Convolutional Neural Networks (CNNs), deep learning models that capture complex, non-

linear patterns in temporal EMG signals for more robust classification of grasp and object types. 

The main objective of this research is to decode the muscle activations related to 

grasping and to understand how different grasp types and object properties influence muscle 

activity. Specifically, we aim to: evaluate the performance of shallow and deep machine 

learning models in discriminating among grasp types and objects based on EMG data, identify 

the temporal phases of the movement where muscle activity is most informative for decoding, 

and analyze the relationships between grasping conditions through the representational 

dissimilarity approach. 

The results of this study can have significant implications in areas such as the 

development of advanced prosthetics, neuromotor rehabilitation, and brain-computer 

interfaces, contributing to improving the quality of life for individuals with motor disabilities 

(Müller-Putz et al., 2019). In summary, this thesis combines shallow and deep machine learning 

techniques with multivariate analysis to offer an innovative perspective on decoding grasping 

EMG data, collected in Sburlea et al. (2021), opening new possibilities for research and 

practical application in the biomedical field. 

 

2. Dataset and Methods  
 
 

2.1 Participants: 
 

The electromyography (EMG) data analyzed in this study were originally collected by 

(Sburlea et al., 2021) from a group of 16 healthy individuals. These participants, aged between 
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20 and 32 years with a mean age of 25.3 years and a standard deviation of 3.5 years, included 

9 females. All were right-handed, as confirmed by an adapted version of the Edinburgh 

Handedness Inventory (Oldfield, 1971). They reported no neurological disorders and had 

normal or corrected-to-normal vision.  

 

2.2 Experimental Paradigm: 
 

 
The experimental design centered on capturing muscle activity during grasping tasks, 

requiring participants to observe and replicate specific hand movements shown on a computer 

screen. Participants sat facing the screen, with wooden objects positioned centrally between 

themselves and the display. The task was programmed using Psychtoolbox (version 3) in 

MATLAB, and a brief practice session preceded the experiment to ensure familiarity with the 

procedure. 

Each trial unfolded over multiple phases, beginning with a fixation period lasting 3 seconds, 

during which participants maintained their gaze on a central cross while resting their right hand 

on a mousepad. This was followed by a 4-second observation phase, where an image of a grasp 

involving one of four objects appeared, allowing participants to study the posture and object 

characteristics without gaze restrictions. Next, an execution phase began when an ‘x’ symbol 

prompted participants to replicate the observed grasp within 4 seconds, shifting their focus to 

the object. After completing the movement, they held the grasp until a “Relax” instruction 

appeared, marking the holding phase. The trial concluded with a 2-second relaxation phase, 

followed by a “Get ready” cue to prepare for the next trial. 

The experiment consisted of 24 runs, each approximately 7 minutes long, totaling about 3 

hours of data collection with short breaks between runs. Participants performed three grasp 

types: power grasp, a strong grip involving the whole hand to hold objects firmly, five-finger 

precision, a precise grip using all five fingers, often for manipulating objects requiring detailed 

control and two-finger precision, a precise grip using only two fingers (the thumb and index 

finger) with four different objects: a large cylinder (5 cm diameter, 24 cm length), a small 

cylinder (3 cm diameter, 24 cm length), a large sphere (8 cm radius), or a small sphere (5 cm 

radius). Each run featured 27 trials with a single object, and every trial lasted 15 seconds. Across 

the experiment, each combination of grasp type and object was repeated 54 times, presented in 

random order. 
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2.3 Data Acquisition: 
 

Muscle activity data were recorded using a Myo armband, a device manufactured by 

Thalmic Labs Inc. (Ontario, Canada), equipped with eight evenly spaced EMG sensors. The 

armband was positioned on the right forearm, just below the elbow, targeting the extrinsic hand 

muscles involved in grasping. Prior to data collection, the device was calibrated for each 

participant to optimize signal quality, and it transmitted data wirelessly via Bluetooth. 

Synchronization with other data streams, such as visual stimuli timing, was achieved using the 

Lab Streaming Layer (LSL), with a photodiode providing precise alignment between EMG 

signals and screen events. 

 

2.4 Data Preprocessing: 
 

 
The EMG data underwent preprocessing by Sburlea et al. (2021) using Matlab R2016b 

(Mathworks, Inc. USA) to ensure suitability for analysis.  EMG data were epoched in fourteen-

second-long segments relative to the beginning of the trial. The EMG datasets were structured 

as channels x trials x time samples. The sampling rate is 200Hz, so for 14 seconds, 2800 samples 

were recorded in theory, but due to some artifacts, the last samples were removed, without 

creating any problems since the last 2 seconds corresponded to the resting stage. So the total of 

the samples to be analysed were 2400, resulting in a total of 12 seconds. Trials were then 

segmented into distinct stages: fixation phase (0–2 s), where participants focused on a fixation 

point observation phase (2–5 s), where participants looked at the object they were going to 

grasp, paying attention to details like the object’s size and shape, which helped them get ready 

for the next step, planning and execution phase (5–8 s), in which participants first planned how 

they would grasp the object based on what they observed and then they carried out the action 

by reaching for and grasping the object, holding phase (8–10 s), where participants held the 

object steady for a short time and releasing phase (10–12 s), in which participants let go of the 

object. These cleaned and segmented EMG data formed the basis for the analyses in this study. 

All the trials were reordered according to a common order of grasping conditions among 

subjects. From all types of data, the trials in which the task had been incorrectly executed were 

rejected. (e.g., movement execution during the observation phase).  

The eight EMG data channels were processed using Hilbert transform, standardized using 

z-score, and, finally, the envelope (power) of the data was computed.  
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2.5 Representational Dissimilarity Matrix (RDM): 
 

 

A Representational Dissimilarity Matrix (RDM) is a tool used in neuroscience and related 

fields to measure and visualize how different patterns of data (e.g., brain activity, muscle 

signals, or behavioral responses) are across a set of conditions or stimuli. It creates a square 

matrix where each cell represents the dissimilarity (or distance) between the data patterns of 

two conditions, typically calculated using metrics like 1 minus Pearson correlation or Euclidean 

distance. Higher values indicate greater differences between conditions. The matrix provides a 

comprehensive view of the relationships among conditions, often visualized as a heatmap, and 

can be further analyzed with techniques like Multidimensional Scaling (MDS) to map these 

dissimilarities into a lower-dimensional space for easier interpretation. RDMs are valuable for 

understanding how distinct or similar representations are within a dataset, such as comparing 

muscle  responses across different grasping conditions  (Figure 1). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1: Illustration of the Representational Dissimilarity Matrix (RDM) process, showing 12 different grasping conditions 
(e.g., various grasp types and objects) with associated EMG data patterns acquired through an acquisition modality. The 
dissimilarity between patterns is calculated using 1 minus the Pearson correlation coefficient (1-corr), resulting in a 12x12 
RDM matrix where higher values (e.g.,  0.7) indicate greater dissimilarity between conditions. Figure adapted from Sburlea 
et al., 2021 

 

The RDM analysis (Kriegeskorte et al., 2008) was performed on electromyographic (EMG) 

data collected from 16 subjects  during grasping tasks involving four objects—Large Cylinder 

(LC), Small Cylinder (SC), Large Sphere (LS), and Small Sphere (SS)—each grasped with 

three techniques (power, five-finger precision, two-finger precision), yielding 12 conditions (4 

objects × 3 grasp types). EMG signals, recorded across eight channels at 200 Hz, were 

standardized to a uniform length of up to 2400 samples (12 seconds) based on the minimum 
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sample count across subjects and objects (2393 samples). The data were segmented into five 

movement phases: fixation (0-2 s), observation (2-5 s), planning/execution (5-8 s), holding (8-

10 s), and releasing (10-11.965 s). Data were organized by object, and condition-specific trials 

were identified using indices from a separate file (indexes_trials.mat). Because trial indices 

were global while data were stored per object, a cumulative offset method was applied to 

correctly map indices to conditions. 

For each condition, the EMG signals were averaged across trials for each of the 8 channels, 

resulting in an average time series per channel per condition. These average time series from 

all 8 channels were then concatenated to form a single vector for each condition. Pairwise 

dissimilarities between these vectors were computed using 1 minus the Pearson correlation 

coefficient, generating a 12 × 12 Representational Dissimilarity Matrix (RDM) for each subject. 

The RDMs were subsequently averaged across subjects to produce a group-level RDM, which 

was visualized as a heatmap. Furthermore, the group-level RDM was subjected to 

Multidimensional Scaling (MDS) analysis to assess the distinctiveness of the conditions, with 

the choice between 2D and 3D representations guided by stress values. 

This analysis allowed for a quantitative assessment of how distinct muscle activation 

patterns are across different grasping conditions. 

 

2.6 Linear Discriminant Analysis (LDA): 
 
 

Linear Discriminant Analysis (LDA) is a statistical technique employed for classification 

and dimensionality reduction. Originally introduced by Fisher (1936), LDA assumes that the 

data within each class follows a Gaussian distribution and that all classes share the same 

covariance matrix. The primary objective of the method is to identify a linear projection of the 

data that maximizes class separation, achieved by optimizing the ratio between the between-

class variance and the within-class variance. 

To investigate the classification of grasp types across different movement phases, we 

performed a standard Linear Discriminant Analysis (LDA) on electromyographic (EMG) data 

collected from 16 subjects performing grasping tasks. For each phase, EMG data were loaded 

from subject-specific files (e.g., EMG_Data_LC_S3.mat), and approximately 54 trials per 

condition per subject were extracted using predefined indices from indexes_trials.mat, mapped 

via a cumulative offset system to align global indices with object-specific data. Features were 
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derived by averaging the EMG signals across the temporal dimension for each trial and channel, 

yielding a feature matrix of size [number of trials × 8 channels] per phase, with corresponding 

grasp type labels (power, five-finger precision, two-finger precision) assigned to each trial. The 

data were then split into training (70%) and testing (30%) sets using a non-stratified holdout 

method with a fixed random seed for reproducibility. An LDA model was trained on the training 

set to classify grasp types based on the extracted features, and its performance was evaluated 

on the test set by calculating the classification accuracy as the proportion of correctly predicted 

grasp types, reported as a percentage for each phase. This analysis allowed us to assess the 

discriminability of grasp types and object types across the different phases of the grasping 

movement, providing insights into how muscle activity patterns vary with grasp and object type 

during distinct temporal stages. 

 

2.7 Convolutional Neural Networks (CNNs): 
 

 

Convolutional Neural Networks (CNNs) are a specialized class of deep learning models 

designed to process structured data, such as images or time-series signals, by leveraging 

convolutional layers that detect local patterns through the application of filters. Introduced by 

LeCun et al. (1989), CNNs utilize hierarchical feature extraction, where initial layers capture 

low-level features (e.g., edges or temporal variations) and deeper layers combine these into 

more complex representations. This architecture, combined with pooling layers to reduce 

spatial dimensions and fully connected layers for classification, enables efficient learning and 

high performance in tasks like pattern recognition, making CNNs a cornerstone of modern 

machine learning. 

To further explore the classification of grasp types across different movement phases, we 

employed a Convolutional Neural Network (CNN) analysis on electromyographic (EMG) data 

collected from the subjects performing grasping tasks. The data were then split into training 

(70%) and testing (30%) sets using a non-stratified holdout method with a fixed random seed 

for reproducibility. A 1D CNN architecture was designed to process the temporal EMG 

sequences, featuring a sequence input layer accommodating the 8 channels with a minimum 

sequence length determined dynamically, followed by two convolutional layers (with 16 and 

32 filters of size 5, respectively, and 'same' padding to preserve temporal dimensions), each 

paired with batch normalization and ReLU activation to enhance training stability and introduce 

non-linearity, a global max-pooling layer to reduce temporal dimensions, two fully connected 
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layers (64 neurons and 3 neurons for the 3 grasp classes), a softmax layer, and a classification 

layer. The CNN was trained using the Adam optimizer over 20 epochs with a mini-batch size 

of 32, shuffling the data every epoch, and validating performance on the test set every 30 

iterations, with training progress visualized via accuracy and loss plots. The model's 

performance was evaluated by classifying grasp types on the test set, with accuracy computed 

as the proportion of correctly predicted labels, reported as a percentage for each phase, 

providing a robust assessment of grasp type discriminability across the temporal stages of 

movement and offering insights into the neural encoding of grasping actions. 

 

3. Results 
 
 

3.1 Representational Dissimilarity Matrix (RDM): 
 
 

The Representational Dissimilarity Matrix (RDM) analysis was employed to evaluate 

the distinctiveness of neural representations, derived from electromyographic (EMG) signals, 

across 12 grasping conditions during five phases of movement: fixation, observation, 

planning/execution, holding, and releasing. For each phase, a 12×12 RDM was computed, with 

dissimilarity values reflecting the differentiation between condition pairs, and 

Multidimensional Scaling (MDS) was applied to assess how well these dissimilarities could be 

represented in a 2D space, with stress values indicating fit quality. The holding phase 

demonstrated the most pronounced dissimilarities, ranging from 0.05 to 1.22 (Figure 5 and 10), 

alongside the lowest MDS stress value of 0.0204, suggesting highly distinct and easily 

separable neural representations when the subject actively maintains the grasp. Similarly, the 

planning/execution (Figure 4 and 9) and releasing phases (Figure 6 and 11) exhibited notable 

dissimilarities, ranging from 0.03 to 0.43 and 0.03 to 0.42 respectively, with low stress values 

of 0.0491 and 0.0479, indicating clear differentiation during the transition into and out of the 

grasp. In contrast, the fixation (Figure 2 and 7) and observation phases (Figure 3 and 8) showed 

lower dissimilarities, ranging from 0.04 to 0.17 and 0.07 to 0.23, with higher stress values of 

0.1668 and 0.1811, reflecting more overlapping or less distinct neural representations during 

these preparatory stages. These results suggest that muscle activity patterns, as captured by 

EMG, are most differentiated during active grasping and its transitions, while preparatory 

phases involve more similar activation patterns across conditions. 
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Figure 4: Heatmap of average RDM for 
planning/execution phase across conditions 
and grasp types (0-0.4) 

Figure 6: Heatmap of average RDM for 
releasing phase across conditions and grasp 
types (0-0.4) 

Figure 2: Heatmap of average RDM for 
fixation phase across conditions and grasp 
types (0-0.16) 

Figure 3: Heatmap of average RDM for 
observation phase across conditions and grasp 
types (0-0.16) 

Figure 5: Heatmap of average RDM for 
holding phase across conditions and grasp 
types (0-1.2) 
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Figure 7: MDS plot, with a stress value of 0.1668, visualizes 
the clustering of different conditions based on the average 
RDM during the fixation phase, with colors indicating 
condition values from 1 to 12 

 

Figure 8: MDS plot, with a stress value of 0.1811, visualizes 
the clustering of different conditions based on the average 
RDM during the observation phase, with colors indicating 
condition values from 1 to 12 

 

Figure 9: MDS plot, with a stress value of 0.0491, visualizes 
the clustering of different conditions based on the average 
RDM during the planning execution phase, with colors 
indicating condition values from 1 to 12 

 

Figure 10: MDS plot, with a stress value of 0.0204, visualizes 
the clustering of different conditions based on the average 
RDM during the holding phase, with colors indicating 
condition values from 1 to 12 

 

Figure 11: MDS plot, with a stress value of 0.0479, visualizes 
the clustering of different conditions based on the average 
RDM during the releasing phase, with colors indicating 
condition values from 1 to 12 
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3.2 Linear Discriminant Analysis (LDA): 
 

Linear Discriminant Analysis (LDA) was applied to classify grasp types, namely power, 

five-finger precision, and two-finger precision, using electromyographic (EMG) data collected 

from 16 subjects, resulting in a dataset of 2393 samples. Given the three grasp types, the chance 

level for random classification was 33%. The classification accuracy demonstrated notable 

variation across the five distinct phases of the grasping movement. A binomial test was used to 

assess the statistical significance of the classification accuracies against the chance level. The 

holding phase yielded the highest accuracy at 73.86% (number of successes: 2283 out of 3091, 

p<.001), substantially surpassing the chance level, followed by the planning/execution phase 

with an accuracy of 65.51% (number of successes: 2025 out of 3091, p<.001) and the releasing 

phase at 57.13% (number of successes: 1766 out of 3091, p<.001), both of which also 

performed significantly above chance. In contrast, the preparatory phases, fixation and 

observation, produced accuracies of 34.26% (number of successes: 1059 out of 3091, 

p=0.1413) and 34.16% (number of successes: 1056 out of 3091, p=0.1684), respectively, which 

were only slightly above the chance level of 33% and did not achieve statistical significance 

(p>0.05). These results suggest that EMG signals exhibit greater distinctiveness during the 

active and transitional phases of the movement, indicating more pronounced differentiation in 

the muscle representations of grasp types during these stages, while the lower accuracies in the 

initial phases are due to reduced variability or specificity in EMG signals before movement 

execution. This analysis underscores the effectiveness of LDA in distinguishing grasp types, 

particularly during dynamic phases, and provides valuable insights into the temporal dynamics 

of motor control in grasping tasks.  

Additionally, LDA was utilized to classify object types, large cylinder (LC), small 

cylinder (SC), large sphere (LS), and small sphere (SS), using the same EMG dataset from 16 

subjects, totaling 2393 samples. With four object types, the chance level for random 

classification was 25%. A binomial test was employed to assess the statistical significance of 

the classification accuracies against this chance level. The classification accuracies across the 

five movement phases were 29.91% for the fixation phase (number of successes: 847 out of 

2832, p<.001), 29.80% for the observation phase (number of successes: 844 out of 2832, 

p<.001), 30.58% for the planning/execution phase (number of successes: 866 out of 2832, 

p<.001), 31.53% for the holding phase (number of successes: 893 out of 2832, p<.001), and 

32.49% for the releasing phase (number of successes: 920 out of 2832, p<.001). All accuracies 
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significantly exceeded the chance level (p<0.001), demonstrating consistent performance above 

random guessing across all phases. Despite this, the accuracies remained modest, suggesting 

that the EMG signals offer limited differentiation for distinguishing between object types. 

To further analyse these findings, confusion matrices were computed for each phase 

(Figures 12 and 13), providing per-condition classification accuracies. For grasp types, the 

holding phase showed the strongest performance, with power grasp correctly classified at 

91.3%, five-finger precision at 69.1%, and two-finger precision at 61.7%, though two-finger 

precision was often misclassified as five-finger precision (34.3%) and vice versa (26.7%). The 

planning/execution phase yielded correct predictions of 79% for power, 65.5% for five-finger 

precision, and 52.6% for two-finger precision, with notable confusion between two-finger and 

five-finger precision (36.0%). The releasing phase achieved 64.2% for power, 39.1% for five-

finger precision, and 67.9% for two-finger precision, while fixation and observation phases 

showed lower performance (41.5%,  32.7% and 28.8% in fixation and 39.7%, 39.4% and 23.8% 

in observation). For object types, the holding phase had the highest correct classification for LC 

at 37.2%, with rates ranging from 21.1% (SS) to 32% (LS), while LC was frequently 

misclassified as SC (31.8%). The fixation phase showed correct rates from 21.1 % (LS) to 

35.8% (LC), with LC confused with LS (38.8%). The planning/execution phase yielded correct 

predictions of 34.1% for LS, 32.6% for SC and 32.4% for LC, with notable confusion between 

LS and SS (36.1%). The releasing phase achieved 32% for LC, 31.9% for LS, and 31.2% for 

SC. 

These detailed insights confirm that grasp type discrimination is most robust in active 

phases, driven by power grasp accuracy, while object type classification remains challenging 

due to overlapping EMG patterns, particularly between similar objects like LS and SS. 

 

Confusion Matrices for Grasp Type Classification 

 

 

 

 

 

Figure 12: Confusion matrix illustrating the classification of grasp types (power, five-finger precision, two-finger precision) across five 
phases of the grasping task: fixation, observation, planning/execution, holding, and releasing 
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Confusion Matrices for Object Type Classification 

 

 

 

 

 

 
Figure 13: Confusion matrix illustrating the classification of object types (large cylinder, small cylinder, large sphere, small sphere) across 
five phases of the grasping task: fixation, observation, planning/execution, holding, and releasing 
 

 

 

 

3.3 Convolutional Neural Network (CNN): 
 

 

The CNN models were trained using a constant learning rate of 0.001, with 225 

iterations per epoch and a total of 4,500 iterations, on a single CPU. The learning rate schedule 

was kept constant throughout all training sessions. 

The Convolutional Neural Network (CNN) was employed to classify grasp types across 

five distinct phases of the task. During the Fixation phase, the model reached a final validation 

accuracy of 34.62% (Figure 14). In the Observation phase, the final validation accuracy was 

34.52% (Figure 15). For the Planning-Execution phase, the network achieved a significantly 

higher accuracy of 87.64% (Figure 16). Similarly, the Holding phase yielded a final accuracy 

of 88.77% (Figure 17). Lastly, during the Releasing phase, the CNN attained a validation 

accuracy of 87.32% (Figure 18). These results indicate notably stronger classification 

performance in the motor execution-related phases (Planning, Holding, Releasing) compared 

to the initial perceptual stages (Fixation, Observation). 
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Figure 14: Chart illustrating training progress, showing accuracy and loss over 4500 iterations across 20 epochs using Convolutional Neural 
Networks for grasp type classification in the fixation phase, with a validation accuracy of 34.62%, trained on a single CPU with a constant 
learning rate of 0.001 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 15: Chart illustrating training progress, showing accuracy and loss over 4500 iterations across 20 epochs using Convolutional Neural 
Networks for grasp type classification in the observation phase, with a validation accuracy of 34.52%, trained on a single CPU with a 
constant learning rate of 0.001 
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Figure 16: Chart illustrating training progress, showing accuracy and loss over 4500 iterations across 20 epochs using Convolutional Neural 
Networks for grasp type classification in the planning/execution phase, with a validation accuracy of 87.64%, trained on a single CPU with a 
constant learning rate of 0.001 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 17: Chart illustrating training progress, showing accuracy and loss over 4500 iterations across 20 epochs using Convolutional Neural 
Networks for grasp type classification in the holding phase, with a validation accuracy of 88.77%, trained on a single CPU with a constant 
learning rate of 0.001 
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Figure 18: Chart illustrating training progress, showing accuracy and loss over 4500 iterations across 20 epochs using Convolutional Neural 
Networks for grasp type classification in the releasing phase, with a validation accuracy of 87.32%, trained on a single CPU with a constant 
learning rate of 0.001 

 

In addition to grasp classification, the CNN was applied to distinguish between different 

object types throughout the five phases of the task. Performance during the early perceptual 

stages was modest, with validation accuracies of 30.60% in the Fixation phase and 30.77% in 

the Observation phase (Figures 19 and 20). A noticeable improvement was observed during the 

Planning-Execution phase, where the model reached 43.29% accuracy (Figure 21). 

Classification performance remained higher during the action-oriented phases, with 37.37% in 

the Holding phase (Figure 22) and 39.63% in the Releasing phase (Figure 23). Although all 

values are above chance level (25%), they remain considerably lower than the accuracies 

obtained in the grasp classification, highlighting a stronger discriminability of hand 

configuration over object identity in this context. 
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Figure 19: Chart illustrating training progress, showing accuracy and loss over 4500 iterations across 20 epochs using Convolutional Neural 
Networks for object type classification in the fixation phase, with a validation accuracy of 30.60%, trained on a single CPU with a constant 
learning rate of 0.001 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 20: Chart illustrating training progress, showing accuracy and loss over 4500 iterations across 20 epochs using Convolutional Neural 
Networks for object type classification in the observation phase, with a validation accuracy of 30.77%, trained on a single CPU with a 
constant learning rate of 0.001 
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Figure 21: Chart illustrating training progress, showing accuracy and loss over 4500 iterations across 20 epochs using Convolutional Neural 
Networks for object type classification in the planning/execution phase, with a validation accuracy of 43.29%, trained on a single CPU with a 
constant learning rate of 0.001 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 22: Chart illustrating training progress, showing accuracy and loss over 4500 iterations across 20 epochs using Convolutional Neural 
Networks for object type classification in the holding phase, with a validation accuracy of 37.37%, trained on a single CPU with a constant 
learning rate of 0.001 
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Figure 23: Chart illustrating training progress, showing accuracy and loss over 4500 iterations across 20 epochs using Convolutional Neural 
Networks for object type classification in the releasing phase, with a validation accuracy of 39.63%, trained on a single CPU with a constant 
learning rate of 0.001 

 
 
 

4. Discussion 
 

The research presented in this thesis has explored the decoding of muscle activations during 

grasping tasks, leveraging both shallow and deep machine learning techniques alongside 

multivariate analysis. By applying Representational Dissimilarity Matrices (RDMs), Linear 

Discriminant Analysis (LDA), and Convolutional Neural Networks (CNNs) to 

electromyography (EMG) data, this study has shed light on how muscle activity patterns differ 

across various phases of grasping and how they relate to specific grasp types and object 

properties.  

The Representational Dissimilarity Matrices (RDMs) revealed that muscle activation 

patterns were most distinct during the holding, planning/execution, and releasing phases of 

grasping, as opposed to the fixation and observation phases. This suggests that active movement 

stages involve unique neuromuscular engagements, likely due to the specific demands of 

initiating, maintaining, and terminating a grasp, which require varied hand configurations and 

force applications. 

Using Linear Discriminant Analysis (LDA), a shallow machine learning model, the study 

achieved a peak accuracy of 73.86% in classifying grasp types (power, five-finger precision, 
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two-finger precision) during the holding phase. Convolutional Neural Networks (CNNs), a deep 

learning approach, further improved this to an impressive 88.77% accuracy in the same phase. 

This high performance indicates that EMG signals robustly capture the distinct muscle 

activation patterns associated with different grasp types, particularly when the hand is actively 

engaged in holding an object. For example, a power grasp likely involves broader muscle 

activation compared to the finer control of a two-finger precision grasp. 

In contrast, classifying object types (large cylinder, small cylinder, large sphere, small 

sphere) proved more challenging, with LDA reaching a maximum accuracy of 32.49% 

(releasing phase) and CNNs peaking at 43.29% (planning/execution phase). These modest 

accuracies, though above chance level (25%), suggest that EMG signals are less sensitive to 

object properties like size and shape. This could be because muscle activation is primarily 

dictated by the grasp type rather than the object itself; grasping a large or small cylinder elicits 

similar patterns if the same grip is applied. 

The high accuracy of 88.77% achieved in classifying grasp types on EMG data aligns 

closely with previous studies, such as Miften et al. (2021) and Wang et al. (2022), who also 

reported robust performance in distinguishing hand grips using EMG signals. This consistency 

underscores the reliability of EMG data for decoding grasp types across different research 

efforts. However, unlike these studies, which primarily focused on grasp classification, this 

research extends the analysis to object type classification, revealing a key difference: the modest 

accuracies of 43.29% (CNNs) and 32.49% (LDA) suggest that EMG signals are less effective 

at capturing object-specific properties like size and shape, a challenge less emphasized in prior 

work and highlighting a potential limitation or unique contribution of this study. 

The CNNs consistently outperformed LDA, especially in grasp type classification, 

highlighting their ability to detect complex, non-linear patterns in EMG data that simpler 

models like LDA might miss. This advantage is particularly evident during active phases, where 

the intricate temporal dynamics of muscle activity are more pronounced. 

 

4.1 Limitations 
 
 
 

One of the main limitations of this study is the size and diversity of the participant group. 

The EMG data were collected from 16 healthy, right-handed individuals, which provided a 
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solid starting point for analyzing muscle activity patterns. However, this relatively small sample 

may not fully represent the broader population. With only 16 participants, the findings might 

not generalize well to larger or more varied groups. Additionally, all participants were right-

handed and free of motor impairments, meaning the results may not be generalized to left-

handed individuals or those with conditions like amputations or neuromuscular disorders. This 

homogeneity limits the practical relevance of the findings for applications like prosthetic 

control, where users often have diverse physical characteristics. To address this in future work, 

it would be valuable to expand the sample size and include participants with a wider range of 

traits, such as left-handed individuals, people with motor disabilities, or even older adults, to 

see if the observed muscle patterns hold across these groups. A larger and more diverse sample 

could strengthen the reliability of the models and make the results more applicable to real-world 

scenarios. 

An other limitation of this study could be the use of Representational Dissimilarity 

Matrices (RDMs) with 1 minus Pearson correlation as the dissimilarity metric may limit the 

analysis by only capturing pairwise differences, potentially missing complex, higher-order 

interactions among grasping conditions. The Linear Discriminant Analysis (LDA) relied on 

features extracted by averaging EMG signals over time, which might oversimplify the temporal 

dynamics of muscle activity and discard critical pattern variations. Similarly, the Convolutional 

Neural Network (CNN) approach used a fixed architecture and hyperparameters, which may 

not be fully optimized for EMG data, possibly constraining its ability to detect subtle temporal 

features. Additionally, concatenating channel data into a single vector for RDMs and averaging 

trials for LDA could reduce the richness of the multi-channel EMG signals, limiting the depth 

of the analysis. 

 A promising direction for future research would also be to combine EMG with brain 

signals, such as those from electroencephalography (EEG), which could capture planning or 

intent before the muscles kick in. Testing this hybrid approach could reveal whether pairing 

these signals improves decoding across all phases, especially the early ones. 

The scope of the experimental design also presents some limitations. The study focused 

on a controlled set of four objects, large and small cylinders and spheres, and three grasp types: 

power, five-finger precision, and two-finger precision. While this setup allowed for a clear and 

manageable analysis, it doesn’t reflect the full range of grasping tasks people encounter in daily 

life. Real-world grasping involves objects with all sorts of shapes, textures, weights, and sizes, 
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like picking up a soft cloth versus a heavy book, and these differences could influence muscle 

activity in ways this study didn’t explore. For example, grasping a slippery glass might require 

more precise muscle adjustments than holding a rough wooden block, but such variations 

weren’t tested here. Future studies could broaden the range of objects and grasp types, perhaps 

including items with different textures or weights, to see how these factors affect muscle 

patterns. It might also be interesting to design more naturalistic tasks, like grasping objects from 

a cluttered table or performing a sequence of actions, to better mimic everyday situations and 

test how adaptable the muscle activation patterns are. 

One of the most exciting possibilities for future work is applying these findings to real-

world challenges, like prosthetic control or rehabilitation. This study focused on healthy 

participants, but the long-term goal is to help people with motor impairments, such as amputees 

or those recovering from strokes. The next step could be to test these models on data from these 

groups to see how well they perform outside the lab. For prosthetics, this might mean adapting 

the CNNs to decode muscle signals in real time, allowing a device to respond instantly to a 

user’s grasp intentions. This would require overcoming practical hurdles, like reducing delays 

in signal processing and ensuring the models work consistently across different users. It could 

also involve tailoring the system to individual needs, say, training it on a specific amputee’s 

residual muscle signals, to make it more personalized and effective. 

 

5. Conclusion 
 

In summary, this thesis has shown that shallow and deep machine learning can 

effectively decode muscle activations during grasping, with the clearest patterns emerging 

during active movement phases. The high accuracy for grasp types and the temporal insights 

from RDMs, LDA, and CNNs lay a strong foundation for understanding grasping dynamics. 

However, limitations like the small and uniform sample, reliance on surface EMG, and a narrow 

set of objects and grasps mean there’s still work to do. By expanding the participant pool, 

integrating additional data sources, testing new models, and linking findings to practical 

applications and neuroscience, future research can take these results further. This study is a 

stepping stone toward unraveling the complexities of muscle activity in grasping and creating 

solutions that enhance lives in the biomedical field. 
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