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Abstract 

This thesis investigates the predictability of short-term fertility outcomes across European 

countries using three machine learning models: penalized logistic regression, support vector 

machines, and extreme gradient boosting (XGBoost). Drawing on harmonized international 

survey data, the analysis explores both theoretical and technical factors that may influence 

model performance, including sample size, class balance, and model-specific characteristics. 

To ensure robustness, all models are evaluated through repeated cross-validation and 

assessed using multiple performance metrics, including accuracy, ROC-AUC, F1 score, and 

Brier score. Findings indicate that predictive performance varies substantially across 

countries, with class distribution and model architecture playing a central role. XGBoost 

consistently outperforms the other models, particularly in countries with balanced class 

distributions. Variable importance analyses reveal that while fertility intentions are key 

predictors in linear models, age-related variables dominate in tree-based approaches. The 

study highlights the need to complement explanatory approaches with predictive frameworks 

and offers methodological insights for future research on demographic behaviour.   



3 
 

Contents 
Predicting fertility across 11 European countries ................................................................... 1 

Abstract ................................................................................................................................. 2 

Chapter 1: Introduction .......................................................................................................... 4 

Chapter 2: Theory ................................................................................................................. 6 

Chapter 3: Method ................................................................................................................12 

Cross-Validation ............................................................................................................12 

Ridge Regression ..........................................................................................................13 

Support Vector Machine ...................................................................................................13 

Choice of kernel ............................................................................................................13 

Extreme Gradient Boost ....................................................................................................14 

Decision Tree ................................................................................................................14 

Application of Decision Trees in XGBoost .....................................................................16 

Hyperparameters ...........................................................................................................17 

Interpretation .................................................................................................................18 

Model Evaluation ..............................................................................................................18 

Variable importance ..........................................................................................................20 

Dataset .............................................................................................................................20 

Choice of variables ...........................................................................................................21 

Sample selection ..............................................................................................................24 

Handling missing values ...................................................................................................24 

Chapter 4: Results ................................................................................................................25 

Assessing Influential Variables context variables ..............................................................27 

Variable importance across different countries ..................................................................29 

Chapter 5: Conclusion & discussion .....................................................................................31 

Effects of social pressure on predictability ........................................................................31 

XGboost as best performing model ...................................................................................32 

Data collection and sampling differences ..........................................................................33 

Difficulty of stating conclusions due to lack of industry standards......................................35 

Appendix ..............................................................................................................................36 

Sources ................................................................................................................................40 

 

  



4 
 

Chapter 1: Introduction 

In 2012, Charles Duhigg wrote in the New York Times about how much companies know 

about individuals. Statistician Andrew Pole revealed that Target’s statistics department could 

predict when a customer was pregnant, based on purchase history. This led to an awkward 

moment when a father confronted a store employee because his high school daughter 

received pregnancy-related coupons. He later apologized after learning she was indeed 

pregnant. In this case, a supermarket knew about the pregnancy before her own father 

(Duhigg, 2012). 

This example highlights two key points for this thesis. First, behaviour prediction has become 

central in science and business, signalling a shift in statistical approaches (Rahal et al., 

2022). Predictive methods often rely on complex models capable of uncovering intricate 

relationships. Drawing on machine learning and techniques from other scientific fields can 

enrich sociological methods (Breiman, 2001b). The reasons are manyfold. First, evaluating a 

statistical model on out-of-sample prediction reduces overfitting and thus leads to a more 

robust empirical literature. Second, these techniques are more capable of modelling non-

linear relationships and interactions improving scientific understanding. Third, if predictive 

performance is poor, it could be sign that current theories are not sufficient in explaining a 

phenomenon (Salganik et al,  2020). Fourth, calculating the relative importance of different 

variables could give more context into how behaviour is shaped, which could help formulate 

new theories.. 

The second key point of the example is that this is a successful case of predicting who will 

have a birth which begs the question of how predictable births are. Fertility is a widely 

studied life outcome (Mills et al., 2011; Balbo et al., 2012), especially in light of its 

demographic, economic, and policy implications. Declining fertility rates across much of 

Europe have prompted increased scholarly attention, yet few studies have explored fertility 

using predictive modelling techniques (Sivak et al., 2024). 

This study 

This thesis will compare the predictability of fertility across eleven different European 

countries. Specifically, I will compare the performance of three predictive models across 

fertility data from eleven European countries, using data from the Generations and Gender 

Survey (GGS). Using the same sets of variables (e.g., partnership status, sex, age) in the 

prediction models, I will further be able to compare variable importance across countries. 

This research thus addresses three research questions. First, how predictable are fertility 

outcomes across Europe? Second, what are cross-country differences—in either 

methodology and/or culture—that affect predictability? Third, which variables are most 

important and how do they vary across countries. The comparison of multiple different 
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countries based on fertility predictability has not been attempted before, therefore adding to 

the scientific literature. 

Scientific relevance  

While an increasing number of researchers are engaging with prediction methods, these 

approaches remain underutilized within sociology and demography (Arpino et al., 2021; 

Salganik et al., 2020; Stulp et al., 2023). Moreover, systematically quantifying predictive 

ability is closely linked to advancing our scientific understanding of social phenomena, yet 

this has not been extensively applied to fertility outcomes (Garip, 2020). 

This thesis addresses that gap by evaluating the predictability of fertility behaviour across 

multiple European countries using machine learning models. By doing so, it not only 

contributes to methodological innovation but also provides insights into the complexity of 

fertility decisions in diverse social contexts. Prediction allows for the identification of non-

linear relationships and complex interactions between factors influencing fertility, which 

traditional linear models may overlook. Additionally, the use of out-of-sample evaluation 

reduces the risk of spurious findings, strengthening the robustness of empirical conclusions 

(Molina & Garip, 2019). 

A focus on prediction is useful for assessing how well fertility can be predicted, which offers 

an indirect test of existing theoretical frameworks. If models perform poorly, this may indicate 

gaps in our understanding of the determinants of fertility, pointing to areas for further 

theoretical development (Salganik et al., 2020). This work thus advances both the scientific 

methods and substantive knowledge within fertility research. 

In the case of fertility, this type of systematic predictive evaluation has been largely absent. 

Without such efforts, it remains unclear whether low predictive performance reflects inherent 

unpredictability in individual fertility choices or shortcomings in existing theoretical models. 

By evaluating the predictability of fertility across multiple national contexts, this thesis 

contributes to clarifying the scope and limits of current explanations, and ultimately 

strengthens the scientific foundations of fertility research. 

Societal relevance 

Fertility behaviour is an increasingly pressing societal issue. In many Western countries, 

fertility rates are below replacement level, leading to population ageing, labour shortages, 

and pressure on welfare systems (Bloom et al., 2009). At the same time, individuals face 

growing barriers to having children, such as economic insecurity, housing shortages, work-

family conflict, and shifting gender norms. Understanding who is likely to have children, and 

under what conditions, can inform public debate and support policy interventions that reduce  

slowing fertility rates which could help solve these issues. 
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Chapter 2: Theory 

Orthodox Modelling in Social Science 

Social science models typically aim to reveal relationships between variables, using simple 

models like linear or logistic regression, with the aim of making causal inferences. These 

models have interpretable parameters that reflect the strength of a particular variable and 

help test hypotheses (Agresti & Finlay, 2013). This approach has culminated in a large body 

of research on fertility (see e.g., Balbo et al., 2012 for review). However, establishing 

causality is challenging without experimental designs and often relies on theory construction, 

which is subjective and difficult to prove (Watts, 2014). Perhaps this is one reason why a 

replication crisis is observed throughout the social sciences and other fields (Bem, 2011; 

Novella, 2012; Aarts et al., 2015). This crisis refers to the many findings of studies that failed 

further replication. Another reason for the replication may be the uncritical use of p-values. 

Regression models test hypotheses via p-values, with the test being whether a parameter is 

different from zero. To aid with this decision, a threshold (usually 5 percent) is used as 

evidence and the finding is considered “statistically significant”. This practice has faced 

criticism due to the fact that the p-value is highly sensitive to statistical practices like sample 

selection, variable inclusion, and outlier removal (Gadbury & Allison, 2012). Since 

researchers can choose how to apply these statistical practices and journals prefer to publish 

significant results, many argue that researcher degrees of freedom contribute to the 

replication crisis by making p-values unreliable indicators of true effects. These issues have 

spurred reassessment of statistical significance as a reliability marker and prompted calls for 

methodological improvement (Aarts et al., 2015). It has been suggested that a way to relieve 

the uncertainty, is to focus on prediction (Yarkoni & Westfall, 2017) 

A Focus on Prediction 

A first and crucial component of prediction is that a model’s quality should be evaluated 

based on its performance on cases it has not seen before, known as out-of-sample 

prediction. Models that perform well on the data they were trained on, or in-sample, may 

perform poorly on new data because they have captured noise specific to the training set that 

does not generalize. This phenomenon is called overfitting. Machine learning models are 

specifically designed to prevent overfitting and to optimize out-of-sample predictive accuracy. 

Such models may also help to reduce underfitting, which occurs when the model lacks 

sufficient complexity to capture the relationship between variables and therefore performs 

poorly across both training and test data. Underfitting is particularly relevant in the context of 

social behaviour, where relationships between predictors and outcomes are often non-linear. 

People do not evaluate situations in a consistent or proportional way, and this inconsistency 

can be attributed to cognitive biases in decision-making. For instance, individuals tend to 
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overestimate the likelihood and impact of rare events (Kahneman, 2011). These distortions in 

perception and judgment challenge the assumptions of linear relationships, which assume 

stable and predictable responses to contextual changes. As a result, behaviour may shift in 

abrupt or context-dependent ways that linear models struggle to detect. 

Machine learning models are capable of addressing these challenges by allowing for the 

inclusion of a large number of variables and by effectively modeling non-linear effects and 

interactions. In doing so, they help mitigate underfitting and reveal patterns that may be 

obscured in simpler statistical models. 

Beyond their ability to balance overfitting and underfitting, machine learning model 

predictions provide a valuable benchmark. These predictions enable researchers to assess 

whether there is potential for model improvement. For example, if a relatively simple model 

performs only slightly worse than a much more complex one, it may be concluded that 

adding more variables is unlikely to yield meaningful gains (Shmueli, 2010). Salganik and 

colleagues (2020), for instance, found that in predicting five life outcomes, more complex 

machine learning models did not substantially outperform simpler benchmark models. 

A drawback of machine learning models is that their increased complexity often makes 

interpreting specific effects more difficult. As models become more complex, they generally 

become less transparent. Although complexity can enhance predictive power, it does not 

necessarily improve our understanding of particular relationships. To address these 

challenges, various interpretability methods have been developed. 

In summary, the social sciences can benefit from a focus on prediction because of machine 

learning’s ability to improve out-of-sample accuracy, handle complex and non-linear 

relationships, and offer empirical benchmarks for model performance—ultimately 

complementing traditional explanatory approaches by revealing patterns that may otherwise 

remain hidden, while also encouraging the development of more robust and generalizable 

theories. 

Prediction in Fertility Research 

Fertility outcomes are studied by many different disciplines because of their importance for 

individuals and populations (Sivak et al., 2024). Although the field is heavily statistics-minded 

and demographers have long been concerned with population forecasts, a focus on 

prediction remains surprisingly limited. Despite this, recent predictive work—such as that by 

Arpino et al. (2021)—has revealed heterogeneous and non-linear patterns in demographic 

outcomes, suggesting clear potential for advancing fertility research. Yet these insights have 

received relatively little attention. Many researchers have participated in large-scale 

collaborative efforts, including data challenges like the Fragile Families Challenge (Salganik 

et al., 2020) and fertility-focused projects by Sivak et al. (2024). While such initiatives have 

contributed valuable methodological innovations, they also consistently expose the low 
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predictive power of existing models. This raises important questions about the strength of 

prevailing theories and the adequacy of current measurement strategies (Salganik et al., 

2020). Because of this reason we will be using 13 already well known variables that have 

influence on fertility behaviour. These will be: Education, Number of marriages, Current 

employment status, Occupational category, Health,  Religion, Current partnership status, 

Marriage, Satisfaction with the relationship, Fertility intentions, Age of the youngest child, 

Gender and Age based on the research of Balbo and colleagues (2012).   

Theoretical Expectations for Variability in Predictability 

There is still limited research on prediction in the social sciences, and this holds even more 

true for fertility research. The absence of existing literature makes it difficult to establish clear 

benchmarks or informed expectations for predictive performance across different contexts. 

Nevertheless, it is still possible to consider the factors that constrain or enhance predictions. 

In machine learning, prediction error can be divided into two categories (Lundberg et al., 

2024). The first is learning error, which stems from the model’s learning process. Factors 

such as sample size, model choice, and noise from data collection can influence how well a 

model make predictions from the available data. For example, country-level sample sizes in 

the Generations and Gender Survey (GGS) dataset (see Table 2.1) shows that sample size 

vary considerably across countries (from 1035 to 5679). A larger sample size can reduce 

learning error by providing more information during model training. While overall sample size 

is important because larger samples can reduce learning error by providing more training 

information, the distribution of the outcome variable is equally critical. Rare events, such as 

low fertility, are inherently more difficult for models to learn. In the Generations and Gender 

Survey (GGS) dataset (see Table 2.1), Bulgaria has the largest sample size among the 

countries included in this study, which would generally support model performance. 

However, Bulgaria also has a low fertility rate, with only 10 percent of respondents having 

had a child during the observation window. This creates a substantial class imbalance that 

limits the model’s ability to learn meaningful patterns, particularly due to the small number of 

positive cases. As a result, the model may struggle to distinguish between individuals who 

had a child and those who did not, despite the large overall sample size. 

The second source of error is irreducible error, which refers to the portion of error that 

remains even when all learning error is eliminated. Irreducible error largely depends on the 

task itself. Its size reflects how much the outcome is shaped by variables we can actually 

measure. This type of error can not be reduced by making different methodological choices. 

In some domains, outcomes may be highly influenced by unpredictable events, or 

unmeasured factors, all of which contribute to higher irreducible error. Such unpredictability 

is hard to quantify and in the same way it is hard to assess which unmeasured factors are 

most problematic (e.g., the known unknowns: (epi)genetics certainly play a role in fertility, but 



9 
 

they are rarely measured in survey, and the unknown unknowns; variables whose 

importance we do not (yet) realise). The difference found between different model types can 

only be attributed to learning error, while the difference between countries is mostly 

irreducible error depending on how similar the data collections is.  

Predictability of behaviour can also vary across different social and cultural settings. Because 

behaviour is strongly shaped by social norms and institutional frameworks, the predictability 

of such behaviour may vary accordingly. In contexts where pronatalist norms are strong, 

such as societies where marriage almost inevitably leads to parenthood or where religious 

and cultural expectations promote early childbearing, fertility outcomes tend to follow more 

uniform patterns, and standard predictors like age and marital status probably perform well. 

For instance, (multilevel) analyses of European data show that similarity in age norms across 

countries strengthens the link between marital status and fertility behaviour (Liefbroer et al., 

2014).  

In contrast, in individualised societies with more relaxed fertility norms, personal values and 

choices play a greater role. Cases such as childfree couples or single women opting for 

sperm donation illustrate increased behavioural divergence, which complicates prediction or 

at least necessitates additional variables to account for this divergence properly. This aligns 

with findings that in settings with strong community education or cultural transmission, 

individual-level variability increases, reducing predictability based on typical demographic 

features (Henrich & McElreath, 2003).  

This distinction is especially relevant in fertility research: variations in normative strength 

across countries directly influence the predictive relevance of common demographic 

variables. Where norms are cohesive, individual variation in behaviour due to preferences 

may be constrained and fertility becomes easier to forecast. Where norms are weaker, 

forecasts become more uncertain, reflecting greater behavioural heterogeneity. 

In the following section, we describe two strongly varying population-level measures that may 

relate to the predictability of fertility outcomes, namely a country’s opinion on childlessness 

and socially accepted age ranges for childbearing.  

Social fertility period 

In regard to fertility, culture is important to understand the differences between different 

countries. In many societies there exists a cultural timetable on which important life event 

expectations are based (Settersten & Hagestad, 1996). When people reach a certain age, 

society will expect them to have children. If they do not match this expectation they will be 

sanctioned (Billari et al., 2010; Lazzari et al., 2022; Diaz & Fiel, 2016). I expect that in the 

countries in which this pressure is more intense, fertility should be more predictable. More 

predictable means that a model should make less mistakes and is more able to distinguish 

having a child and not having a child, which would show a difference in irreducible error, 
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when using the same model. In general, fertility norms are stricter in more traditional and 

conservative societies (Norris & Inglehart, 2004). In keeping with cultural strictness, variables 

like age, marital status and number of marriages should also be more potent predictors for 

fertility in stricter countries. To operationalise cultural strictness in regard to fertility 

behaviour, Liefbroer et al. (2014) used a measure called a “social reproductive period”, which 

is the number of years in which it's socially acceptable to have children (based on data 

collected in 2006 and 2007). The shorter this lifespan is, the stricter the fertility norms should 

be in a country, which would make fertility more predictable. This would make Hungary the 

most predictable country and Austria the least predictable, as the former has the shortest 

reproductive period and the latter the longest (Table 2.1).  Across Europe there does not 

seem to be a lot of cross-country variation in social fertility period except for Hungary and 

Austria.  

Hypothesis 1: A country with a shorter social reproductive period should be more 

predictable than a country with a longer social reproductive period. 

Opinion on childlessness 

In addition to examining the social fertility lifespan, understanding residents’ attitudes toward 

childlessness provides valuable insight into the societal pressure to have children. If 

remaining childless is widely accepted, individuals are likely to feel less compelled to have 

children, even when circumstances are favourable. To assess this, I utilized data from the 

European Values Survey (EVS) conducted in 2017, which asked respondents to rate their 

agreement with the statement: “It is a duty towards society to have children.” Responses 

were scored on a scale where a higher score (5) indicates stronger disagreement with this 

statement, meaning greater acceptance of childlessness. As shown in Table 2.1, Western 

countries such as the Netherlands, France, and Germany exhibit the highest acceptance of 

childlessness, while countries like Bulgaria and Georgia show the least acceptance. This 

pattern aligns with broader cultural trends, as Western European societies tend to emphasize 

individual autonomy and personal choice, which supports greater acceptance of diverse life 

trajectories, including childlessness. In contrast, Eastern European countries often place a 

stronger emphasis on traditional family values, where having children is viewed not only as a 

personal milestone but also as a social expectation and moral responsibility (Merz & 

Liefbroer, 2012). These cultural differences help explain the regional variation in how 

childlessness is perceived and the degree of social pressure individuals may experience. 

Hypothesis 2: A country which is less accommodating to childlessness should be more 

predictable than a country with is more accommodating. 
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Table 2.1: Country Sample size, proportion of People who had child within timeframe 

and length of social reproductive period 

COUNTRY SAMPLE 
SIZE 

PROPORTION 
OF PEOPLE 
WHO HAVE 

HAD A CHILD 
IN SAMPLE 

AVERAGE 
OPINION 
ABOUT 

CHILDLESSNESS 

 SOCIAL 
FERTILITY 
PERIOD 

BULGARIA 5679 0.100 1.913 21.25 

HUNGARY 4996 0.445 2.909 20.80 

POLAND 4726 0.512 2.913 23.25 

GEORGIA 4401 0.175 2.112 21.25 

AUSTRIA 3912 0.198 3.308 26.95 

RUSSIA 3752 0.438 2.850 22.35 

FRANCE 3183 0.192 3.662 24.45 

NETHERLANDS 3071 0.198 4.231 22.65 

CZECH 
REPUBLIC 

1522 0.142 2.466 22.35 

GERMANY 1431 0.224 3.443 23.85 

LITHUANIA 1035 0.443 2.722 21.58 
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Chapter 3: Method 

This chapter examines three machine learning methods: ridge regression, support vector 

machines (SVM), and extreme gradient boosting (XGBoost). It covers their theoretical 

foundations, implementation on fertility data, and evaluation through cross-validation and 

performance metrics. 

The first model employed is a penalised logistic regression, which serves as a baseline due 

to its simplicity and interpretability. The second model is a support vector machine, included 

for its greater complexity and its distinct underlying methodology compared to the other 

models. The third model is an extreme gradient boosting (XGBoost) algorithm, selected for 

its strong performance in recent classification tasks (Park & Lee, 2022; Niazkar et al., 2024). 

Given its proven effectiveness in similar contexts, we expect XGBoost to achieve the highest 

predictive performance in this study. 

Cross-Validation 

All three models rely on hyperparameters, which are values that control how the model 

learns from the data and generates predictions. To determine the optimal values for these 

hyperparameters, a portion of the training data must be set aside to assess model 

performance. Instead of relying on a single split of the data, this study uses cross-validation, 

a widely recommended resampling method (Rooij and Weeda 2020). In this approach, the 

training data are divided into equally sized subsets. The amount of subsets or folds can vary, 

but as part of study we have chosen for five folds for all models to increase comparability. 

The model is trained on all but one fold and validated on the remaining fold. Its performance 

is measured by way of f1 score. This procedure is repeated so that each fold is used once as 

the validation set, and the performance metrics across all folds are averaged to produce a 

more stable and reliable estimate of model quality. The model will be trained with multiple 

different values for each hyperparameter to determine the best values. Cross-validation 

improves predictive accuracy, reduces the influence of random variation from a single data 

split, and enhances the replicability of results (de Rooij and Weeda 2020). 

For hyperparameter tuning, cross-validation is used to evaluate different hyperparameter 

sets. Each hyperparameter or combination of hyperparameters is assessed based on its 

cross-validated predictive ability score, and the set yielding the best predictions is selected 

for final model evaluation on the holdout data which was not used in hyperparameter tuning. 

Once the optimal hyperparameters are identified, the model is trained on the entire training 

dataset and then tested based on the holdout set (which has not been used during cross 

validation) to generate final predictions. 
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Ridge Regression 

Ridge regression, like standard logistic regression maximizes the maximum likelihood, but 

with the addition of a penalty term for the sum of all coefficients in the model, effectively 

constraining the magnitude of the coefficients (Hastie et al., 2013). This penalty term (λ) is 

determined via cross-validation. The penalty term with the best average out-of-sample 

performance is used, this value does change per country. As a result of the penalty term, 

ridge regression fits the training dataset less tightly because the coefficients are smaller. This 

penalty makes predictive performance worse in the training set, but it is likely to make better 

out-of-sample predictions. 

1: 𝑚𝑎𝑥𝑖𝑚𝑖𝑧𝑒 ∑[𝑙𝑛(1 − 𝑝𝑖) + 𝑦𝑖𝑙𝑛(𝑝𝑖1 − 𝑝𝑖)]

𝑁

𝑖=1

−  𝜆 ∑ 𝛽𝑗
2

𝑝

𝑗=1

 

Support Vector Machine 

A Support Vector Machine (or SVM) is a model that can distinguish between types of 

outcomes (Hearst et al., 1998). It does this by drawing a “boundary” through the data space. 

Figure 3.1 shows such a boundary for the simplest case of two variables on the two axis 

(plus the outcome inidicated by colour) in two-dimensional space. When additional variables 

are involved, the boundary line turns into a hyperplane. The area around this boundary to the 

closest datapoint of each group is called the margin and has to be maximized. The closest 

data points are the so-called support vectors on which the boundary is based, which is where 

this model gets its name from. 

Choice of kernel 

When an outcome is not linearly separable (compare Figures 3.1a and b), a kernel function, 

which is a mathematical formula, is used to transform the data into a higher-dimensional 

feature space, enabling the support vector machine (SVM) to construct a linear decision 

boundary (Figure 3.1c). In this study, I employ the radial basis function (RBF) kernel, chosen 

for its strong predictive performance despite its reduced interpretability (Pan, 2023). The RBF 

kernel maps predictors into an infinite-dimensional space, with its flexibility governed by two 

critical parameters: gamma (γ), which controls the radius of influence of individual data 

points, and C, the regularization parameter that balances margin width against classification 

error. A high gamma yields complex, localized decision boundaries, risking overfitting, while 
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a low gamma produces smoother, more generalized boundaries that may underfit (sci-kit 

learn, n.d.). Conversely, a high C prioritizes perfect training classification (narrow margin, 

potential overfitting), whereas a low C tolerates misclassifications to widen the margin and 

improve generalization. Other SVM hyperparameters include the kernel degree for 

polynomial kernels, class weights for imbalanced data, and the tolerance parameter for 

optimization convergence, though these have less impact on RBF kernel performance. The 

optimal γ and C are determined through cross-validation. 

Figure 3.1: 

(a) A linearly separable distribution with a standard Support Vector Machine (SVM) 

decision boundary (Janbandhu, 2024); 

(b) a non-linearly separable distribution (Saxena, 2021); 

(c) transformation into a higher-dimensional space with a non-linear decision surface 

(Anshul, 2025). 

   

Extreme Gradient Boost 

The third model used in this thesis is Extreme Gradient Boost or XGBoost (Chen & Guestrin, 

2016). This model uses a large number of decision trees, which will be explained first. 

Decision Tree 

A decision tree is a predictive model that divides a dataset into smaller and more 

homogeneous subgroups in order to make classifications or predictions. Given a dataset with 

a binary outcome, the decision tree algorithm begins by splitting the data into two groups. 

This initial split is made based on one of the input features and a chosen threshold, which is 

a specific value that best separates the data into distinct groups (whether a group is made 

out of either mostly 0’s or 1’s). If for example a medicine has a positive effect on all women 

but not on one man, then gender would be great split. 

To determine whether a split is useful, the model uses a measure of impurity such as the 

Gini impurity score (see Formula 1). This score reflects how mixed the classes (either 0 or 1) 
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are within a group. A lower Gini score means the group is more “pure,” meaning that most of 

its elements belong to the same class. 

Each resulting subgroup is then evaluated in the same way. If further splitting leads to a 

meaningful reduction in impurity, the group is split again using a new threshold. This process 

continues until no further beneficial splits can be made. The final groups, which are no longer 

split, are called leaves. These are the endpoints of the decision tree (see Figure 3.2). 

 

2: 𝐺𝑖𝑛𝑖 𝑖𝑚𝑝𝑢𝑟𝑖𝑡𝑦 𝑠𝑐𝑜𝑟𝑒 = 1 − (𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑜𝑓 “1”)2 − (𝑝𝑟𝑜𝑏𝑎𝑏𝑙𝑖𝑡𝑦 𝑜𝑓 “0”)2 

This often results in decision trees where some paths, also called branches, are deeper than 

others. Predicting the class of new observations is done in the following way: starting at the 

top of the tree, the observations are routed through the branches based on the learned 

threshold values. When an observation reaches the end of a branch, known as a leaf, a 

prediction is made based on the training examples that also ended up in that leaf. Because 

this method does not rely on a linear relationship between variables, it is more flexible in 

capturing complex patterns. 

The total number of subgroups, and the minimum number of observations allowed per leaf 

are all hyperparameters that can all be determined. Limiting the complexity of a decision tree 

is often done to prevent overfitting.  

Figure 3.2: Graphical representation of a Decision Tree (Kim, 2022) 
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Many of the better performing models build many decision trees, which outperform the 

development of singles trees. Therefore, models are used that build on the decision tree 

principle. Examples include: AdaBoost, Gradient Boost, Random Forest, and Extreme 

Gradient Boost, also known as ensemble methods. These models use the fundamentals of a 

decision tree to make better predictions by adding multiple decision trees in a multitude of 

ways. 

Application of Decision Trees in XGBoost 

Extreme Gradient Boosting (XGBoost) is a machine learning algorithm that builds an 

ensemble of decision trees in a sequential manner. It is particularly well-suited for tabular 

data (which is data organized in rows and columns), where it consistently outperforms more 

complex models such as deep neural networks (Grinsztajn et al., n.d.). XGBoost operates by 

constructing multiple decision trees, where each new tree aims to correct the errors 

(residuals) made by the previous one. 

The process begins with a simple prediction—typically a constant value of 0.5 for all 

observations. The difference between this initial prediction and the true outcome forms the 

residuals, which reflect the prediction errors. A new decision tree is then trained to predict 

these residuals in the same training data. Each subsequent tree focuses on the remaining 

errors, gradually improving the overall model fit. This iterative approach allows XGBoost to 

approximate complex patterns in the data. 

To prevent overfitting, XGBoost incorporates several regularization techniques. One of them 

is a similarity score used to evaluate potential splits in the tree, analogous to the Gini impurity 

in standard decision trees. The similarity score incorporates a penalty term (λ) to discourage 

overly complex splits: 

3: 𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 𝑠𝑐𝑜𝑟𝑒 =  
(Σ 𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙 𝑖)2

Σ [𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑖 ∗ (1 − 𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑖)] +  𝜆 
 

 

This score is used to decide whether a split improves model performance. A gain score 

quantifies the improvement obtained by a split, calculated as: 

4: 𝐺𝑎𝑖𝑛 𝑠𝑐𝑜𝑟𝑒 = 𝐿𝐸𝐹𝑇𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 + 𝑅𝐼𝐺𝐻𝑇𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 − 𝑅𝑂𝑂𝑇𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 

 

This formula uses the similarity score of the original leaf, denoted by the root similarity, and 

the new similarity scores denoted by the left and right similarity. If the gain score exceeds a 

certain threshold, denoted by γ (gamma), the split is accepted and the tree continues to 
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grow. After each tree is built, its output is multiplied by a learning rate (ε), typically set to 0.3, 

and added to the previous model. This lessens the contribution of each tree and reduces the 

risk of overfitting. 

The process continues until either a specified number of trees is reached or the model 

performance on validation data no longer improves. The final model is a weighted sum of all 

individual trees, each one trained to model the residuals of the previous ensemble. 

XGboost hyperparameters  

A key hyperparameter is the maximum tree depth, which imposes a strict limit on how deep 

each decision tree can grow. A greater depth permits the construction of more complex 

trees, which may improve in-sample performance but also increase the risk of overfitting. 

Conversely, a tree that is too shallow may not capture more complex patterns in the data, 

leading to underfitting. 

Another important parameter is the minimum number of observations per leaf, which also 

influences tree complexity. This threshold determines the smallest allowable leaf size, and its 

ideal value depends on the characteristics and size of the dataset. Notably, this parameter 

may contribute to the formation of asymmetrical trees, in which certain branches extend 

deeper than others. 

The gamma (γ) parameter plays a pivotal role in the decision-making process of the tree. It 

determines whether a given branch is allowed to split further by evaluating the gain score. If 

the gain score falls below the specified gamma value, the branch is designated as a terminal 

leaf. Thus, a higher gamma value leads to more conservative, simpler trees, whereas a lower 

value encourages more complex, granular splitting. 

Additionally, the penalty term (λ) affects how tightly a model fits the training data. When λ is 

set to zero, it exerts no influence. As λ increases, achieving high similarity scores becomes 

more difficult, resulting in reduced model complexity and greater resistance to overfitting. 

Lastly, the learning rate (ɛ) controls the extent to which each individual tree contributes to the 

overall model prediction by minimizing individual contributions. While a standard value of 0.3 

is commonly used, lower values tend to yield higher accuracy by requiring more iterations, 

albeit with increased computational demands. Higher learning rates, on the other hand, allow 

the model to converge more quickly on the correct prediction in theory but often at the 

expense of overshooting optimal values, which can hinder predictive performance. 

In addition to these core hyperparameters, several others are relevant to controlling 

complexity and improving generalization. The subsample parameter determines the 

proportion of training instances used to build each tree, introducing randomness that helps 

prevent overfitting. Similarly, colsample_bytree controls the fraction of features randomly 

selected for each tree, while colsample_bylevel does so for each tree level. The total number 
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of trees is governed by n_estimators, and in cases of class imbalance, the scale_pos_weight 

parameter adjusts the loss function to give more importance to the minority class.  These 

parameters are all determined by cross validation, creating the predictive performance. 

Interpretation 

Interpreting an Extreme Gradient Boost model is difficult due to the aforementioned 

complexity. One can examine the thresholds calculated by the individual decision trees, but 

as the number of trees increases, so too does the number of thresholds. This, combined with 

a lack of clear interpretability of the thresholds themselves, makes substantive interpretation 

of the model difficult. Although direct interpretation of these results is no necessary for this 

thesis. 

Model evaluation for the three models 

At present, there is no universally accepted standard for evaluating predictive models within 

the scientific community. This study adopts out-of-sample evaluation, using 75 percent of the 

data for training and the remaining 25 percent as out-of-sample data for evaluating final 

model performance. While this is a widely used approach, there are multiple evaluation 

metrics available, each suited to different objectives and contexts. These differences require 

researchers to make subjective choices about what kind of performance is most relevant for 

their specific research goals. 

In light of this, four distinct evaluation metrics are used in this study: accuracy, ROC-AUC, F1 

score, and Brier score. Each metric captures a different aspect of model performance. Unlike 

traditional hypothesis testing, these measures do not yield binary outcomes such as 

"significant" or "not significant." Instead, they provide a useful measure of the strength of an 

entire model.  

Accuracy 

The first metric used to evaluate predictive performance is accuracy, defined as the 

proportion of correctly predicted outcomes over the total number of predictions (Zheng, 

2015). Accuracy is intuitive and easy to communicate, making it a commonly used metric in 

predictive modelling. However, it has notable limitations in the context of class imbalance—

when the event of interest occurs either relatively rarely or frequently. In such cases, models 

that consistently predict the majority class may still yield deceptively high accuracy. This is 

relevant in our study, where the fertility outcome of having a child in 3 to 4 years occurs 

relatively infrequently (e.g., roughly 28%). Consequently, although accuracy will be reported 
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to provide general context, it should be interpreted with caution and supplemented by other, 

more informative performance metrics. 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝑇𝑟𝑢𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝑇𝑟𝑢𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒 + 𝑓𝑎𝑙𝑠𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒
 

ROC-AUC 

The second metric employed is the Receiver Operating Characteristic – Area Under the 

Curve (ROC-AUC), which quantifies the model’s ability to distinguish between classes. It is 

calculated by plotting the true positive rate (TPR) against the false positive rate (FPR) at 

various classification thresholds and computing the area under this curve (Zheng, 2015). The 

TPR represents the proportion of correctly identified positive cases (i.e., individuals who had 

a child) out of all actual positive cases, while the FPR denotes the proportion of negative 

cases incorrectly classified as positive, relative to all actual negative cases. By summarizing 

performance across all possible thresholds, the ROC-AUC metric mitigates the influence of 

class imbalance, which is particularly relevant in the context of fertility prediction, where 

positive outcomes are relatively rare. Despite its usefulness, the ROC-AUC is more abstract 

than metrics such as accuracy, which can make its interpretation less intuitive. The resulting 

value ranges from 0 to 1, where 0.5 indicates random performance and 1.0 denotes perfect 

discrimination. 

Brier-score 

The third metric used is the Brier score, which measures the performance of probabilistic 

predictions. It is calculated as the mean squared difference between the predicted probability 

assigned to an outcome and the actual binary outcome (Redelmeier et al., 1991). Unlike 

classification metrics that require thresholding of predicted probabilities into binary outcomes, 

the Brier score retains the continuous nature of probability estimates. This makes it 

particularly useful for evaluating the calibration of a model—how closely predicted 

probabilities reflect actual outcomes. A lower Brier score indicates better predictive 

performance, with values ranging from 0 (perfect prediction) to 1 (completely inaccurate 

prediction for a binary outcome). In the context of fertility prediction, this metric provides 

insight into how confident the model is in its predictions, making it a valuable complement to 

threshold-dependent measures such as accuracy and ROC-AUC. 

𝐵𝑟𝑖𝑒𝑟 − 𝑠𝑐𝑜𝑟𝑒 =
1

𝑛
∗ Σ(𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑖 − 𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 𝑐𝑙𝑎𝑠𝑠 𝑖)2 

F1 score 
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The final metric included is the F1 score, which serves to better assess the impact of class 

imbalance on model performance. The F1 score is the harmonic mean of precision and 

recall, two complementary metrics that capture different aspects of prediction quality (Zheng, 

2015). Precision reflects the proportion of predicted positive cases that were indeed positive 

(i.e., proportion of individuals predicted to have a child that indeed had a child), while recall 

indicates the proportion of actual positive cases that were correctly identified by the model 

(i.e., proportion of correct predictions who had a child relative to everyone in the sample who 

had a child or true positive rate). By combining these two metrics, the F1 score balances the 

trade-off between over-predicting positive outcomes (which inflates false positives) and 

under-predicting them (which inflates false negatives). This makes it a particularly suitable 

metric in scenarios with class imbalance, such as who has a child in a narrow timeframe, 

where the positive outcome is relatively rare. 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝑓𝑎𝑙𝑠𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒
 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑟𝑢𝑒 𝑝𝑜𝑠𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒 𝑝𝑜𝑠𝑡𝑖𝑣𝑒 + 𝑓𝑎𝑙𝑠𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒
 

𝐹1 𝑠𝑐𝑜𝑟𝑒 =  
2 ∗ 𝑃𝑟𝑒𝑐𝑖𝑠𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 

Variable importance 

Parameter estimates for most machine learning models are difficult to interpret because 

there is a large amount of parameters to consider with more complex models and these are 

often not intuitive. To address this, several interpretable ML techniques have been 

developed. One relatively simple yet effective approach is variable importance (Breiman, 

2001). This method works by randomly permuting a single predictor in the holdout data, 

making predictions with this modified dataset, and then measuring how much the model’s 

accuracy declines. A greater drop indicates that the variable is more important. This 

technique allows us to identify which predictors carry the most weight in each model and how 

this differs across countries. 

Dataset 

The data used in this study is derived from the Generations and Gender Survey (GGS) 

(Fokkema et al., 2016), a large-scale, cross-national, longitudinal dataset designed to 

improve understanding of demographic behaviours and family dynamics. The GGS is a 

cross-national panel survey on life-course and family dynamics of individuals aged 18-79 
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years, with follow-up surveys at three and six-year intervals to track how people's lives 

unfold. The aim of this programme is to provide researchers with up-to-date, internationally 

comparable family demographic data, coordinated by a team based at the Netherlands 

Interdisciplinary Demographic Institute (NIDI). 

Over the past 20 years, the GGP has collected survey data in 25 countries in Europe and 

beyond. For this study, 11 countries were selected from the 18 countries where GGS has 

been conducted: Austria, the Netherlands, Hungary, Poland, Russia, Bulgaria, Georgia, 

Lithuania, Germany, France, and the Czech Republic. Only countries for which two waves of 

data were available were included, as the dataset's panel structure allows us to measure 

fertility outcomes—specifically the occurrence of childbirth between survey waves, typically 

spaced 3 to 4 years apart depending on the country. In total, these 11 countries covered 

37.708 individuals who were present in both waves (see also Appendix 1).  

Survey Design and Methodology 

The GGS questionnaire, created by an international team of social scientists, captures 

comprehensive individual-level variables essential for fertility analysis, including age, 

education, employment, relationship status, fertility intentions, and number of children. The 

infrastructure includes a register-linked survey of adults to which a contextual database 

covering their adult lives is matched. The GGP's overarching goal is to provide data 

infrastructure for improved understanding of the causes and consequences of dramatic 

declines in fertility and changes in partnership behavior in Europe and other affluent 

countries. The survey's longitudinal design enables researchers to examine both 

retrospective life histories and prospective behavioural outcomes, making it particularly 

valuable for studying intention-behaviour consistency in fertility decisions. 

After its first round of face-to-face implementation, the second round has been implemented 

on the web, though this methodological shift has required careful assessment of data quality. 

Recent validation studies have verified the accuracy of fertility histories by comparing GGS 

data with population-based estimates from the Human Fertility Database (HFD) and the 

United Nations Population Division, confirming the reliability of the web-based data collection 

approach (V. A. Leocádio et al., 2023). 

Choice of variables 

For comparability across all models and countries, I have chosen 13 variables based on the 

meta research of Balbo and colleagues (2012) and the availability in the GGS dataset. These 

were:  

1. Education: highest achieved level of education. In order to make this variable 

comparable across the countries the original coding was changed, and the final 

https://www.zotero.org/google-docs/?BE67BF
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variable included three levels: 1) pre-primary, primary, or lower secondary education, 

2) upper-secondary and post-secondary non-tertiary education, and 3) higher 

education. 

Education is a major driver of fertility behaviour and differently so for men and women (Beck 

et al., 2024). For example, highly educated women are more likely to be childless, whereas 

the opposite is true for men (Jalovaara et al., 2018). 

2. Number of marriages: the total number of marriages that a person had, including the 

current one. 

3. Marriage: whether a person is currently married or not  

4. Current partnership status: whether a person currently has a co-habiting partner, a non-

cohabiting partner, or no partner. 

5. Satisfaction with the relationship measured from 0 (not at all satisfied) to 4 (completely 

satisfied), plus “no partner”.  

Relationship context is a central determinant of fertility. Being in a stable union, especially 

marriage, is traditionally associated with higher fertility across most societies (Kuang et al., 

2025). While cohabitation is increasingly common and serves as a setting for childbearing, 

marriage remains a stronger predictor of fertility intentions and behavior, particularly for higher-

order births. The number of marriages captures complex life-course dynamics, such as 

remarriage, which can influence fertility through blended family motivations and partnership 

renewal (Elleamoh & Dake, 2019). Additionally, relationship satisfaction plays a critical role in 

childbearing decisions. Individuals in higher-quality relationships are more likely to desire and 

plan for children, while those in less satisfying or unstable relationships may postpone or forego 

fertility (Testa & Basten, 2014). 

6. Current employment status (employed, unemployed/retired/currently on leave). 

7. Occupational category: an ISCO category of current occupation (if employed) or 

previous occupation (if currently not employed) 

Employment status affects fertility through financial stability and work-life balance. 

Employment can act as a barrier to fertility for women or a prerequisite depending on welfare 

services in a country (Kreyenfeld, 2009). For men, employment is more consistently viewed as 

a prerequisite for fatherhood, as stable income and job security are often seen as necessary 

to support a family (Tragaki & Bagavos, 2014).  

8. Health: whether a person has a long-standing illness or chronic condition 

Health status is a critical factor in fertility behavior. Individuals with chronic illnesses or long-

term health conditions may experience reduced biological capacity to conceive or raise 

children and may also choose to delay or avoid childbearing due to health-related concerns 

about parenting capacity and longevity. Health can also affect the stability of partnerships and 
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employment, both of which further influence fertility intentions and outcomes (Lazzari & 

Beaujouan, 2025). 

9. Religion (none, Orthodox, Catholic, other Christian, other religion) 

Religious beliefs often guide values related to marriage, contraception, and family size. More 

religious individuals or communities tend to have higher fertility intentions and outcomes, 

influenced by traditional gender roles and family norms. Religious affiliation thus remains a key 

socio-cultural factor in understanding fertility behavior, even in secularizing societies (Skirbekk, 

Kaufmann, & Goujon, 2010). 

10. Fertility intentions: whether a person wants to have a(nother) child in the next 3 years 

Stated fertility intentions are one of the strongest predictors of short-term fertility behaviour. 

Although not all intentions are realized, they provide valuable insight into motivational and 

contextual factors underlying future childbearing decisions. Fertility intentions are especially 

useful when analysed alongside age, partnership status, and employment (Schoen et al., 

1999). 

11. Age of the youngest child. (if a person Is childless, they will be coded as -1 ) 

The age of the youngest child helps to capture spacing patterns and progression to higher-

order births. Parents with very young children often delay further childbearing, whereas those 

whose youngest child is older may be more likely to plan another child. It is a dynamic factor 

reflecting life course timing (Van Bavel & Różańska-Putek, 2010). 

12. Gender. 

Fertility behavior and the social meaning of parenthood differ significantly by gender. Women’s 

fertility is more biologically time-limited and more directly affected by employment, relationship 

dynamics, and policy supports. Men's fertility tends to occur later and is more closely linked to 

stable employment and union formation. Gender thus serves as a key moderating variable in 

fertility analysis (Goldscheider, Bernhardt, & Lappegård, 2015). 

13. Age.  

Age is a foundational variable in fertility research. It reflects both biological constraints and 

social expectations around parenthood. Younger individuals are more likely to intend future 

childbearing, while older individuals face declining fecundity and narrower opportunities for 

family formation. Age also interacts with other key variables such as education, partnership, 

and employment (Mills et al., 2011). 

While it is true that using a relatively limited set of predictor variables may constrain the 

performance of more complex models such as XGBoost and Support Vector Machines 

(SVM), this trade-off was considered acceptable in order to ensure a fair and consistent 

comparison across models and builds on existing theoretical work. Prioritizing comparability 

over maximizing predictive accuracy was deemed more appropriate for the purposes of this 

analysis. 
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14.  New child 

We measured a couple having a new child by the calculating the difference between the 

amount of children a person had between the first and the second wave of the GGS dataset. 

When this number is higher than 0, it was denoted as a 1 otherwise it is a 0. 

Sample selection 

After the age of 45, very few people have children, mainly due to biological limitations 

(Eijkemans et al., 2014). For this reason, individuals over 45 were excluded from the 

analysis. This also ensures a clearer focus on the sociological factors influencing fertility 

behavior among those still of childbearing age and helps partially reduce variation in age 

distributions across countries. Additionally, respondents with missing values on the outcome 

variable were excluded (~N = 7150) as such cases provide no usable information for model 

estimation and can impair the accuracy and validity of predictive analysis 

Handling missing values 

Some models, such as XGBoost, can automatically handle missing values by treating them 

as meaningful information. For instance, if a survey question is left blank, the missing 

response might actually be useful for prediction, perhaps indicating a specific behaviour or 

trait. However, in this analysis, we chose to manually impute missing values for all variables. 

While this makes the models more comparable (since not all algorithms handle missing data 

the same way), it also means we lose XGBoost’s natural ability to learn from missing data 

patterns. This trade-off was intentional for consistency, but it’s important to recognize that 

imputation removes one of XGBoost’s strengths. 

To preserve as much data as possible, I imputed all missing numeric variables using the 

median and all categorical variables using the mode, both calculated from the training set. 

The number of missing values for each variable is detailed in Appendix A. This approach 

prevents the substantial case loss that would occur from listwise deletion, thereby 

maintaining sample size and enhancing the reliability of predictive modelling. This can 

exacerbate possible bias in a dataset but for datasets of this size it is less likely. 

An exception to this strategy is the variable for age of the youngest child. In approximately 90 

percent of cases, a missing value for this variable reflects childlessness rather than non-

response. For this reason, it was not imputed using the standard procedure. Instead, these 

missing values were treated as meaningful and handled separately, by assigning -1 as an 

indicator to capture the presence or absence of children. 
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Chapter 4: Results 

We report all four key evaluation metrics, accuracy, precision, recall, and F1 score, to 

provide a comprehensive assessment. Since models can perform well on some metrics but 

poorly on others, it is essential to identify these variations and explore potential explanations 

for why differences occur across countries. 

Figure 4.1: for each country and model (a) accuracy, (b) ROC AUC, (c) Brier score, and 

(d) F1 score. Performance is compared across three models: Ridge Regression 

(green), Support Vector Machine (blue), Extreme Gradient Boosting (red). Each model 

was run three times. 

 

There is considerable variation across each of the four metrics in terms of performance. 

Accuracy ranges from 0.73 To 0.93. These high accuracies are partly driven by the highly 

imbalanced datasets that imply that even a model that predicts that no one would have a 

child would do well. The ROC AUC scores vary from 0.63 to 0.94; the former considered 

poor performance and the latter excellent performance (Çorbacıoğlu & Aksel, 2023). The 

Brier score ranges from 0.076 to 0.180. Taking the square root of 0.076 equals 0.27, which 

can be interpreted as the predicted probability on average being 0.27 off from the correct 

class. The F1 scores ranges from 0.73 to 0.94.  

No country performs consistently well on all of evaluation metrics. However, some countries, 

such as Bulgaria, Poland, and the Netherlands, tend to perform relatively well overall, even if 

they fall short on specific metrics. Bulgaria stands out with the highest F1 score, strong 

accuracy, and the lowest Brier score. This indicates that the model performs well in both 



26 
 

classification accuracy and probability calibration for this country. It does have comparatively 

low ROC AUC which could have been caused by class imbalance. 

Poland shows consistently high scores across all four metrics, suggesting a well-balanced 

model performance. The Netherlands also scores highly on accuracy, Brier score, and ROC 

AUC, but its lower F1 score indicates some difficulty in balancing precision and recall, even if 

the overall probability estimates and rankings are strong. 

In contrast, countries like Russia, Germany, and Georgia generally show weaker 

performance, especially on F1 score and ROC AUC. This may reflect challenges in capturing 

patterns in the data, poor class balance, or issues related to data quality in those countries. 

Czech Republic presents a particularly interesting case. It performs reasonably well on 

accuracy, F1 score, and Brier score, but has a notably low ROC AUC. This could mean that 

the model makes correct binary predictions but struggles with ranking cases correctly by 

predicted probability. One possible explanation is that most predicted probabilities are 

clustered near the decision threshold, which can result in good accuracy but poor ranking 

performance. Alternatively, this pattern might stem from class imbalance or limited variance 

in the predicted scores. 

These results highlight why it is important to evaluate models using multiple metrics. Each 

one captures a different aspect of model behaviour, and relying on only one may obscure 

important performance trade-offs.  

Comparing Models 

Across all countries and evaluation metrics, XGBoost performs best overall, followed by 

support vector machines and ridge regression. XGBoost shows clear advantages in both 

classification performance and probability calibration, particularly in countries with more 

balanced class distributions. It generally produces higher ROC-AUC and F1 scores, and 

lower Brier scores, indicating strong discriminative ability and well-calibrated predictions. 

Support vector machines and ridge regression tend to yield similar results, though they vary 

slightly depending on the country. In some cases, these models perform competitively, but 

they are less flexible in capturing complex relationships in the data. Accuracy scores are 

highest in countries with strong class imbalance, but this mostly reflects a bias toward 

predicting the majority class and should be interpreted with caution. Overall, while all three 

models offer some predictive value, XGBoost provides the most consistent and reliable 

performance across different settings and evaluation criteria. 

We ran each model three times to assess variability in model performance depending on 

how the data is split into training and holdout data. We observed consistent results across all 

three iterations and models. The relative performance ranking remained stable—for instance, 

if XGBoost outperformed SVM, which outperformed penalized regression, this pattern held 

across all iterations. 
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Assessing Influential Variables context variables 
When evaluating predictive performance, it is important to take country-specific factors into 

account. We consider sample size and the base fertility rate to be potential constraints on 

model performance. We also examine the length of the social fertility period and societal 

attitudes toward childlessness to explore how cultural and social factors might influence 

predictability. In the analysis that follows, we focus on the Brier score and F1 score. These 

two metrics offer complementary insights: the Brier score evaluates how well the predicted 

probabilities align with actual outcomes, while the F1 score captures the balance between 

precision and recall. This is particularly important given the class imbalance that often 

characterizes fertility data. This focus allows for a nuanced assessment of both the reliability 

and practical utility of the predictions. The same scatterplots for accuracy and ROC-AUC are 

provided in appendix 2 for completeness. In these analyses, for comparability purposes and 

clarity, we only focussed on XGBoost models (which performed best) and we took the 

average of the three iterations as predictive performance. In the supplement we also show 

these results for the other types of models.  

Figure 4.2: A) brier score against sample size B) f1- score against sample size  

  

 

There appears to be a mild positive relationship between sample size and model 

performance. The correlation with F1 scores shows a weak positive association (r = 0.170), 

while Brier scores demonstrate a strong negative correlation (r = -0.803), indicating that 

larger sample sizes are associated with better performance on both metrics. This pattern 

aligns with machine learning expectations: larger datasets typically provide more training 

examples, leading to better model generalization and more reliable probability estimates. 

Countries with larger samples allow models to learn more robust patterns, resulting in both 

improved classification accuracy and better calibrated predictions. 

Figure 4.3: A) brier score against fertility base rate B) f1- score against fertility base 

rate 
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The relationship with fertility proportion reveals the strongest correlations in our analysis, 

though with opposing directions across metrics. F1 scores show a strong negative correlation 

(r = -0.792), while Brier scores show a mild negative correlation (r = -0.120). This means that 

countries with higher fertility rates a lower F1 scores and mildly better Brier scores. However, 

this pattern requires careful interpretation. The strong negative correlation with F1 scores 

may partly reflect the metric's behaviour when base rates are high - models that frequently 

predict "zero" can still achieve reasonable F1 scores even without truly learning meaningful 

patterns. The Brier score correlation is much weaker and the negative correlation means the 

opposite as a lower Brier score means a better performance, suggesting that the relationship 

between fertility rates and prediction difficulty is not consistent across metrics and may be an 

artifact of how F1 scores behave with imbalanced data rather than indicating that higher base 

rates genuinely make prediction more challenging 

Figure 4.3: brier score and f1- score against social fertility period  

 
 

 

The social fertility period shows minimal association with model performance across both 

metrics. F1 scores display a very weak negative correlation (r = -0.045), while Brier scores 

show a mild positive correlation (r = 0.341). The scatterplots reveal no clear linear trends, 

suggesting that the length of socially acceptable fertility periods has negligible impact on 

model predictability. This finding indicates that while fertility timing norms may influence 
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individual reproductive decisions, they do not systematically translate into better or worse 

model performance across different national contexts. 

Figure 4.4: brier score and f1- score against opinion on childlessness  

  

 

Societal attitudes toward childlessness show weak but consistent correlations with model 

performance. F1 scores demonstrate a mild negative correlation (r = -0.246), while Brier 

scores show a mild positive correlation (r = 0.275), suggesting that more accepting attitudes 

toward childlessness are associated with slightly worse performance on both metrics. 

However, visual inspection of the data suggests a potential non-linear relationship where 

countries with either very accepting or very disapproving attitudes demonstrate better overall 

performance than those with moderate positions. This pattern implies that polarized societal 

norms - regardless of their direction - may create more predictable behavioural patterns than 

ambivalent cultural contexts. 

To test these patterns more formally, we created a linear regression model predicting the 

brier score and the f1-score using four predictors: sample size, fertility proportion, social 

fertility period, and opinion about childlessness. The exact values of these models can be 

found in appendix 3 .The results show that only sample size and fertility proportion are 

statistically significant predictors of performance. Social fertility period and opinion on 

childlessness did not have a clear independent effect once the other variables were included. 

This suggests that while cultural attitudes may matter, we found no evidence for their direct 

effect in this study. 

Variable importance across different countries 

Comparing variable importance across countries provides valuable insights into how fertility 

patterns function differently by context. Given that each country requires a visualisation and 

there are 13 variables available, displaying all graphs would be unwieldy. Therefore, I 

present only the top three most important variables per country, ranked by their average 

importance for XGBoost only, as it is the best performing model. Using average ranks helps 
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mitigate the influence of extreme values and provides a more robust foundation for cross-

national comparison. 

The analysis reveals several compelling patterns. In countries with the most positive attitudes 

toward childlessness—France, the Netherlands, and Austria—fertility intentions consistently 

emerge as the most important predictor variable. Conversely, fertility intentions do not 

appear among the top three predictors in countries such as Russia, Georgia, and Hungary, 

where the age of the youngest child takes precedence as the primary factor. These findings 

highlight significant cross-national differences in fertility prediction models and underscore 

the critical importance of context-specific interpretations when analysing reproductive 

behaviour across diverse cultural and policy environments. 

Figure 4.2: Top 3 most important variables per country 
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Chapter 5: Conclusion & discussion 

This study set out to test the use of different models with the aim of predicting fertility 

behaviour. Predictability varied substantially across countries. There are several reasons 

why predictability can vary: sample size (Lundberg et al., 2024), base rate (He & Garcia, 

2009), differences in data quality (Lundberg et al., 2024), and substantive reasons such as 

cultural variation that shape fertility behaviour. These issues make it difficult to draw clear 

conclusions and point to the need for more standardized data and modelling practices in 

cross-national research.  

Direct comparison of our fertility prediction results with other machine learning studies in 

demography is challenging due to fundamental differences in research design, outcomes, 

and metrics. Arpino et al. (2021) achieved 70% accuracy predicting union dissolution in 

Germany using Random Survival Forests, while Stulp et al. (2023) focused on fertility 

preferences rather than actual fertility behaviour and did not report comparable accuracy 

metrics. Our fertility models show accuracy ranging from 0.73 to 0.93 and ROC AUC scores 

from 0.63 to 0.94 across European countries. However, these apparent differences may 

reflect distinct prediction tasks (union dissolution vs. fertility behaviour vs. fertility 

preferences), different datasets (German Socio-Economic Panel vs. GGS), varying outcome 

definitions, and different baselines rates rather than genuine differences in predictability. 

What these studies do consistently demonstrate is that machine learning approaches, 

whether Random Survival Forests or XGBoost, substantially outperform traditional statistical 

methods in demographic prediction tasks, though establishing meaningful benchmarks for 

"good" predictive performance in demography remains an ongoing challenge. 

Effects of social pressure on predictability  
We hypothesised that a shorter social reproductive lifespan would make fertility behaviour 

more predictable, because a shorter lifespan would make variables like age more potent. 

The results we found does not support this hypothesis. Instead, it suggests that factors 

beyond the duration of socially acceptable reproductive years may play a larger role. Which 

could be caused by the limited variation in reproductive lifespans. 

We also did not find a support for our second hypothesis which stated that a worse opinion 

about childlessness would make fertility behaviour more predictable, as a bad opinion about 

childlessness would put more pressure on people to have children at a certain age. 

Methodological and data differences did account for difference in predictability, particularly 

sample size and fertility proportion had statistically significant impact on predictive 

performance. This shows that methodological factors and basic demographic conditions 

explain more of the cross-national variation in fertility predictability than the cultural or social 
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variables we initially expected to be important. We are hesitant to conclude that cultural 

differences do not impact predictability, but is likely that cultural differences have a smaller 

impact relative to methodological differences. 

Future cross national comparison in predictability are likely to suffer from the same 

methodological difficulties. These issues could be partially solved in the future by a more 

unified approach to collecting data or different ways of resampling collected data. 

 

Fertility intentions more important in Western countries 

Cross-country differences were observed in which variables were most important in 

predicting fertility, suggesting cultural differences certainly exist. Countries which had less 

social pressure to have children in a certain timespan, most notably relied on fertility intention 

as a primary predictor of fertility outcomes. This reliance on fertility intentions may explain 

why none of the variables based on social pressure had a significant impact in our lineair 

regression, though this relationship requires further investigation. 

The predictive models which put emphasis on fertility intention demonstrated minimal 

dependence on factors conventionally associated with social pressure and structural 

constraints, such as marriage rates and formal partnership arrangements (Ellemann & Dake, 

2019). Instead, the models emphasized individuals' explicitly stated reproductive intentions 

(Schoen et al., 1999).  The prominent role of fertility intention in these models could have 

compensated for the structural factors that were theoretically expected to enhance predictive 

accuracy under conditions of strong social pressure. Which could be a reason there was no 

support for our two hypotheses. 

Despite this overall pattern, a notable regional variation emerges in the data. Eastern 

European countries consistently demonstrate greater reliance on marital and relationship 

status variables rather than fertility intention measures in their predictive models. This 

regional distinction suggests meaningful variation in the underlying sociocultural mechanisms 

that drive fertility decision-making processes (Sobotka, 2004; Frejka, 2008; Billingsley, 2010). 

The divergent predictive patterns observed across these countries may reflect differing 

institutional contexts, policy environments, and cultural frameworks that shape reproductive 

behaviour differently across European regions. These findings confirm long held beliefs 

about Post Communist Eastern European nations as more pro-natal as a result of the 

hardship of the collapse of the Communism. This context made remaining childless while in a 

position to have children more difficult (Thorne, 2005). 

XGboost as best performing model  
Cross-model differences reveal a consistent pattern where XGBoost models outperformed 

the other two types in nearly every country, with only a few exceptions, despite efforts to 
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level the playing field such as removing missing values and limiting the number of variables 

used across all models. This superior performance provides strong evidence that XGBoost is 

a more effective approach for predicting fertility outcomes in Europe, which is in line with 

current research putting XGBoost as most suitable to tabular data which is used in this thesis 

(Yarkin Yildiz & Kalayci, 2024). When interpreting variable importance across different model 

types, it becomes clear that the age of the person and the age of the youngest child are far 

more important to XGBoost models than to the other two, suggesting a non-linear effect of 

these age variables on the probability of having a child. This finding is expected because 

XGBoost, being tree-based, is better able to model non-linear relationships, and such non-

linear patterns are intuitive since fertility rates likely peak around certain ages, lending 

additional support to this understanding of fertility dynamics. These findings confirm the 

theoretical understanding we have of interbirth intervals having to be either not to short or not 

to long (Van Bavel & Różańska-Putek, 2010). We also find confirmation in our understanding 

of age as an obstacle to fertility, in which being either too young or too old may hinder fertility 

behaviour (Mills et al., 2011). 

Data collection and sampling differences 

To ensure fair cross-country comparisons, data collection procedures should be as 

consistent as possible. Unfortunately, this is not always the case for the GGS dataset, where 

fieldwork protocols differ across countries. Although the GGS provides guidelines based on 

best practices, there is no enforced standard for how data collection should be conducted. As 

shown in Table 6.1. substantial variation exists in sampling methodology, including the 

number of sampling stages, the use and type of stratification, and the timing of data 

collection. These differences may limit the validity of direct comparisons between countries. 

Table 6.1: The differences between countries in sampling method. 

Country 
# Sampling 

Stages 
Stratification Frame 

Frame 

Elements 

Type of 

Sampling 

Austria 1 YES 
Population 

register 
Names SRS 

Bulgaria 2 NO Area & Census Dwellings PPS + SRS 
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Country 
# Sampling 

Stages 
Stratification Frame 

Frame 

Elements 

Type of 

Sampling 

Czech Republic 2 YES Area Dwellings PPS + SRS 

France 2 YES 

Census & 

update new 

dwellings 

Dwellings PPS + SRS 

Georgia 2 YES Census Names PPS + SRS 

Germany 2 NO Area (GIS) Addresses PPS + SRS 

Hungary 2 YES 
Area, 

Settlement 
Addresses PPS + SRS 

Lithuania 2 YES Area Settlements RR + RR 

Netherlands 1 NO Area Addresses SRS 

Poland 2 YES Census area Dwellings SRS 

Russian 

Federation 
2 NO Area Dwellings PPS + SRS 

Fokkema et al. (2016) provide a comprehensive assessment of GGS Wave 1 and 2 data 

collection procedures and note that while "the quality of sampling and fieldwork procedures 

of the GGS is generally good," cross-national differences in implementation may affect 

comparability. Their analysis found that after weighting, the data were generally 

representative in terms of age, gender, region, and household size, but showed greater 

variation in representativeness for marital status and educational attainment across 

countries. 

The variation in sampling frames—ranging from population registers to area-based 

approaches—represents a particular challenge for cross-country comparisons. While the 

impact of these methodological differences on our specific predictive models was beyond the 

scope of this study to quantify, they represent an important caveat when interpreting cross-

country variations in model performance.  
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Difficulty of stating conclusions due to lack of industry standards 

While this thesis has demonstrated that predictive machine learning models can offer new 

and interesting insights, it remains difficult to reach clear conclusions and communicate them 

effectively due to the absence of established industry standards for what constitutes good 

prediction in demographic research. Although this has allowed for a more nuanced 

discussion of each country, it also makes it harder to clearly present the findings. 

The field currently lacks consensus on key methodological questions: what accuracy 

thresholds should be considered satisfactory for different types of demographic predictions, 

how to standardize model validation procedures for cross-country comparisons, and how to 

interpret feature importance rankings across different cultural and institutional contexts. 

Without established benchmarks, it becomes challenging to determine whether observed 

differences in model performance across countries reflect meaningful demographic variations 

or simply methodological artifacts. 

I have personally found it challenging to discuss the results of this thesis with other scientists. 

This difficulty is likely to decrease as prediction-focussed research is increasing and 

standards become more widely accepted. 
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Appendix 

Appendix 1: Sample size per country, variable and missing percentage 

 
BULGARIA RUSSIA GEORGIA GERMANY FRANCE HUNGARY NETHERLANDS 

(N=5679) (N=3752) (N=4401) (N=1431) (N=3183) (N=4996) (N=3071) 

HIGHEST ACHIEVED 
LEVEL OF EDUCATION 

       

MISSING 65 (1.1%) 222 
(5.9%) 

0 (0%) 94 (6.6%) 0 (0%) 0 (0%) 0 (0%) 

CURRENT EMPLOYMENT 
STATUS 

       

MISSING 2 (0.0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 11 (0.2%) 2 (0.1%) 

CURRENT OCCUPATION 
       

MISSING 31 (0.5%) 12 
(0.3%) 

24 (0.5%) 14 (1.0%) 0 (0%) 50 (1.0%) 5 (0.2%) 

HAS LONG-STANDING 
ILLNESS OR CHRONIC 
CONDITION 

       

MISSING 6 (0.1%) 0 (0%) 0 (0%) 4 (0.3%) 0 (0%) 8 (0.2%) 0 (0%) 

RELIGION 
       

MISSING 17 (0.3%) 0 (0%) 0 (0%) 2 (0.1%) 115 
(3.6%) 

88 (1.8%) 271 (8.8%) 

CURRENT 
RELATIONSHIP STATUS 

       

MISSING 18 (0.3%) 15 
(0.4%) 

0 (0%) 12 (0.8%) 0 (0%) 1 (0.0%) 0 (0%) 

CURRENTLY MARRIED 
       

MISSING 122 
(2.1%) 

47 
(1.3%) 

0 (0%) 17 (1.2%) 0 (0%) 355 
(7.1%) 

1 (0.0%) 

SATISFACTION WITH 
RELATIONSHIPS WITH 
PARTNER 

       

MISSING 143 
(2.5%) 

153 
(4.1%) 

0 (0%) 15 (1.0%) 124 
(3.9%) 

382 
(7.6%) 

135 (4.4%) 

WANT TO HAVE A CHILD 
IN THE NEXT 3-4 YEARS 

       

MISSING 659 
(11.6%) 

797 
(21.2%) 

682 
(15.5%) 

400 
(28.0%) 

530 
(16.7%) 

382 
(7.6%) 

652 (21.2%) 

AGE OF THE YOUNGEST 
CHILD (YEARS) 

       

MISSING 32 (0.6%) 66 
(1.8%) 

3 (0.1%) 11 (0.8%) 13 
(0.4%) 

59 (1.2%) 20 (0.7%) 
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Appendix 2: accuracy and ROC-AUC scatterplots 
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Appendix 3: linear regressions  

Call: 

lm(formula = .estimate ~ sample_size + fertility_prop + childless_opinion +  

    social_fertility_period, data = brier_data) 

 

Residuals: 

     Min       1Q   Median       3Q      Max  

-0.05028 -0.01470  0.00043  0.01233  0.05648  

 

Coefficients: 

                            Estimate Std. Error t value Pr(>|t|)     

(Intercept)               9.701e-02  3.465e-02   2.800  0.00621 **  

sample_size              -9.559e-06  1.631e-06  -5.862 6.75e-08 *** 

fertility_prop            8.116e-02  1.684e-02   4.819 5.53e-06 *** 

childless_opinion        -1.811e-03  4.441e-03  -0.408  0.68436     

social_fertility_period      2.196e-03  1.648e-03   1.333  0.18578     

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 

Residual standard error: 0.02274 on 94 degrees of freedom 

Multiple R-squared:  0.3914, Adjusted R-squared:  0.3655  

F-statistic: 15.11 on 4 and 94 DF,  p-value: 1.421e-09 

 

all: 

lm(formula = f1 ~ sample_size + fertility_prop + childless_opinion +  

    social_fertility_period, data = f1_data) 

 

Residuals: 

      Min        1Q    Median        3Q       Max  

-0.067384 -0.011104  0.002896  0.013306  0.060049  

 

Coefficients: 

                          Estimate Std. Error t value Pr(>|t|)     

(Intercept)              9.867e-01  3.495e-02  28.234  < 2e-16 *** 

sample_size           5.844e-06  1.645e-06   3.554 0.000597 *** 

fertility_prop           -2.777e-01  1.699e-02 -16.349  < 2e-16 *** 

childless_opinion       -9.684e-04  4.479e-03  -0.216 0.829288     
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social_fertility_period -2.113e-03  1.662e-03  -1.271 0.206754     

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 

Residual standard error: 0.02293 on 94 degrees of freedom 

Multiple R-squared:  0.7574, Adjusted R-squared:  0.747  

F-statistic: 73.35 on 4 and 94 DF,  p-value: < 2.2e-16 
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